Artificial intelligence for atrial fibrillation detection, prediction, and treatment: A systematic review of the last decade (2013-2023)

被引:4
作者
Salvi, Massimo [1 ]
Acharya, Madhav R. [2 ]
Seoni, Silvia [1 ]
Faust, Oliver [3 ]
Tan, Ru-San [4 ,5 ]
Barua, Prabal Datta [6 ,7 ]
Garcia, Salvador [8 ]
Molinari, Filippo [1 ]
Acharya, U. Rajendra [9 ,10 ]
机构
[1] Politecn Torino, Dept Elect & Telecommun, Biolab, PolitoBIOMedLab, Turin, Italy
[2] Univ Southern Queensland, Springfield, Qld, Australia
[3] Anglia Ruskin Univ, Sch Comp & Informat Sci, Cambridge Campus, Cambridge, England
[4] Natl Heart Ctr, Singapore, Singapore
[5] Duke NUS Med Sch, Singapore, Singapore
[6] Univ Southern Queensland, Sch Business Informat Syst, Toowoomba, Qld, Australia
[7] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW, Australia
[8] Univ Granada, Andalusian Res Inst Data Sci & Computat Intelligen, Dept Comp Sci & Artificial Intelligence, Granada, Spain
[9] Univ Southern Queensland, Sch Math Phys & Comp, Springfield, Qld, Australia
[10] Univ Southern Queensland, Ctr Hlth Res, Springfield, Qld, Australia
关键词
artificial intelligence; atrial fibrillation; biosignals; healthcare; predictive models; TIME-FREQUENCY ANALYSIS; AUTOMATIC DETECTION; NEURAL-NETWORK; ELECTROCARDIOGRAM; RISK; ALGORITHM; DISCRIMINATION; CLASSIFICATION; PERFORMANCE; DISEASE;
D O I
10.1002/widm.1530
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Atrial fibrillation (AF) affects more than 30 million individuals worldwide, making it the most prevalent cardiac arrhythmia on a global scale. This systematic review summarizes recent advancements in applying artificial intelligence (AI) techniques for AF detection, prediction, and guiding treatment selection and risk stratification. In adherence with the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), a total of 171 pertinent studies conducted between 2013 and 2023 were examined. Studies applying machine learning (ML) and deep learning (DL) to electrocardiogram (ECG), photoplethysmography (PPG), wearable data, and other sources were evaluated. For AF detection, most works employed DL (48 studies) and ML (28 studies) on ECG data. DL methods directly analyzed ECG waveforms and outperformed approaches relying on hand-crafted features. For prediction and risk stratification, 22 studies used ML while 7 leveraged DL on ECG. An emerging trend showed the growing potential of PPG for AF screening. Overall, AI demonstrated promising capabilities across various AF-related tasks. However, real-world implementation faces challenges including a lack of interpretability, the need for multimodal data integration, prospective performance validation, and regulatory compliance. Future research directions involve quantifying model uncertainty, enhancing transparency, and conducting population-based clinical trials to facilitate translation into practice. This article is categorized under: Application Areas > Health Care Application Areas > Science and Technology Technologies > Artificial Intelligence
引用
收藏
页数:44
相关论文
共 198 条
[1]   Dynamic ECG features for atrial fibrillation recognition [J].
Abdul-Kadir, Nurul Ashikin ;
Safri, Norlaili Mat ;
Othman, Mohd Afzan .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 136 :143-150
[2]   Detecting cardiac pathologies via machine learning on heart-rate variability time series and related markers [J].
Agliari, Elena ;
Barra, Adriano ;
Barra, Orazio Antonio ;
Fachechi, Alberto ;
Vento, Lorenzo Franceschi ;
Moretti, Luciano .
SCIENTIFIC REPORTS, 2020, 10 (01)
[3]   Coronary Microvascular Dysfunction and the Risk of Atrial Fibrillation From an Artificial Intelligence-Enabled Electrocardiogram [J].
Ahmad, Ali ;
Corban, Michel T. ;
Toya, Takumi ;
Attia, Zachi I. ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Cohen, Michal Shelly ;
Sara, Jaskanwal D. ;
Ozcan, Ilke ;
Lerman, Lilach O. ;
Kapa, Suraj ;
Friedman, Paul A. ;
Lerman, Amir .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2021, 14 (08)
[4]   Automated Echocardiographic Detection of Heart Failure With Preserved Ejection Fraction Using Artificial Intelligence [J].
Akerman, Ashley P. ;
Porumb, Mihaela ;
Scott, Christopher G. ;
Beqiri, Arian ;
Chartsias, Agisilaos ;
Ryu, Alexander J. ;
Hawkes, William ;
Huntley, Geoffrey D. ;
Arystan, Ayana Z. ;
Kane, Garvan C. ;
Pislaru, Sorin V. ;
Lopez-Jimenez, Francisco ;
Gomez, Alberto ;
Sarwar, Rizwan ;
O'Driscoll, Jamie ;
Leeson, Paul ;
Upton, Ross ;
Woodward, Gary ;
Pellikka, Patricia A. .
JACC-ADVANCES, 2023, 2 (06)
[5]   A Deep Learning Approach for Atrial Fibrillation Classification Using Multi-Feature Time Series Data from ECG and PPG [J].
Aldughayfiq, Bader ;
Ashfaq, Farzeen ;
Jhanjhi, N. Z. ;
Humayun, Mamoona .
DIAGNOSTICS, 2023, 13 (14)
[6]   Machine Learning to Classify Intracardiac Electrical Patterns During Atrial Fibrillation Machine Learning of Atrial Fibrillation [J].
Alhusseini, Mahmood I. ;
Abuzaid, Firas ;
Rogers, Albert J. ;
Zaman, Junaid A. B. ;
Baykaner, Tina ;
Clopton, Paul ;
Bailis, Peter ;
Zaharia, Matei ;
Wang, Paul J. ;
Rappel, Wouter-Jan ;
Narayan, Sanjiv M. .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2020, 13 (08) :E008160
[7]   Deep learning model to quantify left atrium volume on routine non-contrast chest CT and predict adverse outcomes [J].
Aquino, Gilberto J. ;
Chamberlin, Jordan ;
Mercer, Megan ;
Kocher, Madison ;
Kabakus, Ismail ;
Akkaya, Selcuk ;
Fiegel, Matthew ;
Brady, Sean ;
Leaphart, Nathan ;
Dippre, Andrew ;
Giovagnoli, Vincent ;
Yacoub, Basel ;
Jacob, Athira ;
Gulsun, Mehmet Akif ;
Sahbaee, Pooyan ;
Sharma, Puneet ;
Waltz, Jeffrey ;
Schoepf, U. Joseph ;
Baruah, Dhiraj ;
Emrich, Tilman ;
Zimmerman, Stefan ;
Field, Michael E. ;
Agha, Ali M. ;
Burt, Jeremy R. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2022, 16 (03) :245-253
[8]   Accurate detection of paroxysmal atrial fibrillation with certified-GAN and neural architecture search [J].
Asadi, Mehdi ;
Poursalim, Fatemeh ;
Loni, Mohammad ;
Daneshtalab, Masoud ;
Sjodin, Mikael ;
Gharehbaghi, Arash .
SCIENTIFIC REPORTS, 2023, 13 (01)
[9]   Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine [J].
Asgari, Shadnaz ;
Mehrnia, Alireza ;
Moussavi, Maryam .
COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 60 :132-142
[10]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867