A Survey on Recent Advancements in Lightweight Generative Adversarial Networks, their Applications and Datasets

被引:0
作者
Alexiou, Michail S. [1 ]
Mertoguno, J. Sukarno [1 ]
机构
[1] Georgia Inst Technol, Sch Cybersecur & Privacy, Atlanta, GA 30332 USA
来源
2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI | 2023年
关键词
Lightweight Neural Networks; Generative Adversarial Networks; Towards TinyML;
D O I
10.1109/ICTAI59109.2023.00047
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generative Adversarial Networks (GANs) have garnered significant research attention owing to their revolutionary generator-vs-discriminator architecture, making them versatile for various domains, including medical, military, and computer vision applications. Nevertheless, their computationally demanding nature during training and inference restricts their widespread adoption on mobile and edge devices. In this study, the latest advancements are explored in lightweight GAN implementations, considering their unique characteristics and diverse applications. The objective is to identify modifications that can enhance the efficiency of GAN-based models without compromising their robustness and accuracy, both for specific use-cases and in a more general context. Additionally, a discussion is presented on the availability of datasets suitable for lightweight GAN training and evaluation, as well as potential research directions for the future.
引用
收藏
页码:269 / 278
页数:10
相关论文
共 85 条
[1]  
[Anonymous], Technical report
[2]  
[Anonymous], 2001, QuickBird Satellite Image Gallery
[3]  
[Anonymous], 2020, Case Western Reserve University Bearing Data Center
[4]  
[Anonymous], 2015, Earth Engine Data Catalog
[5]   SIDA-GAN: A lightweight Generative Adversarial Network for Single Image Depth Approximation [J].
Anupama, V ;
Kiran, A. Geetha .
RESULTS IN ENGINEERING, 2022, 16
[6]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[7]  
Bell-Kligler S, 2019, ADV NEUR IN, V32
[8]   A Neural Parametric Singing Synthesizer Modeling Timbre and Expression from Natural Songs [J].
Blaauw, Merlijn ;
Bonada, Jordi .
APPLIED SCIENCES-BASEL, 2017, 7 (12)
[9]   SimSwap: An Efficient Framework For High Fidelity Face Swapping [J].
Chen, Renwang ;
Chen, Xuanhong ;
Ni, Bingbing ;
Ge, Yanhao .
MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, :2003-2011
[10]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223