Le Chatelier's principle enables stable and sustainable aqueous sodium/magnesium-ion batteries

被引:3
作者
Karlsmo, Martin [1 ]
Hosaka, Tomooki [1 ,2 ]
Johansson, Patrik [1 ,3 ]
机构
[1] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[2] Tokyo Univ Sci, Dept Appl Chem, Shinjuku Ku, Tokyo 1628601, Japan
[3] ALISTORE European Res Inst, CNRS FR 3104, Hub Energie, Rue Baudelocque, F-80039 Amiens, France
基金
瑞典研究理事会;
关键词
ELECTROLYTE; INTERCALATION;
D O I
10.1039/d3ta06826a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Prussian blue analogue (PBA) based aqueous batteries assembled with organic materials are an up-and-coming and promising technology for less demanding applications. By avoiding scarce, costly, and toxic transition metals (e.g. Ni/Co/Cu), the technology may become low-cost, more environmentally benign, and also safer than today's alternatives. Here we rely on a PBA using the FeII/III redox pair together with aqueous low-to-medium concentrated fluorine/perchlorate-free electrolytes and organic materials to create long-term performant cells. The performance in terms of capacity, coulombic efficiency, cell voltage, and energy density are all comparable with previously reported aqueous PBA-based batteries, while the cycling performance is substantially improved by practically implementing Le Chatelier's principle. Additionally, we investigate the redox process(es) and find no proof for any proton storage, but that both Na+ and Mg2+ likely are active, why we classify it as an aqueous Na/Mg-ion battery. We present a new Prussian blue analogue based aqueous battery that by three salts in low-to-medium concentrations in the electrolyte substantially enhances the cycling performance and give promise for low-cost and sustainable energy storage.
引用
收藏
页码:4029 / 4036
页数:8
相关论文
共 40 条
[1]   Aqueous Intercalation of Graphite at a Near-Neutral pH [J].
Alcorn, Francis M. ;
Kuntz, Kaci L. ;
Druffel, Daniel L. ;
Warren, Scott C. .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (09) :5062-5067
[2]   Electrolyte solvation structure manipulation enables safe and stable aqueous sodium ion batteries [J].
Ao, Huaisheng ;
Chen, Chunyuan ;
Hou, Zhiguo ;
Cai, Wenlong ;
Liu, Mengke ;
Jin, Yueang ;
Zhang, Xin ;
Zhu, Yongchun ;
Qian, Yitai .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (28) :14190-14197
[3]   Quantifying the life-cycle health impacts of a cobalt-containing lithium-ion battery [J].
Arvidsson, Rickard ;
Chordia, Mudit ;
Nordelof, Anders .
INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2022, 27 (08) :1106-1118
[4]   Progress in Aqueous Rechargeable Sodium-Ion Batteries [J].
Bin, Duan ;
Wang, Fei ;
Tamirat, Andebet Gedamu ;
Suo, Liumin ;
Wang, Yonggang ;
Wang, Chunsheng ;
Xia, Yongyao .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[5]   Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor [J].
Brousse, Thierry ;
Taberna, Pierre-Louis ;
Crosnier, Olivier ;
Dugas, Romain ;
Guillemet, Philippe ;
Scudeller, Yves ;
Zhou, Yingke ;
Favier, Frederic ;
Belanger, Daniel ;
Simon, Patrice .
JOURNAL OF POWER SOURCES, 2007, 173 (01) :633-641
[6]   High-energy-density aqueous sodium-ion batteries enabled by chromium hexacycnochromate anodes [J].
Chen, Junsheng ;
Liu, Chang ;
Yu, Zixun ;
Qu, Jiangtao ;
Wang, Cheng ;
Lai, Leo ;
Wei, Li ;
Chen, Yuan .
CHEMICAL ENGINEERING JOURNAL, 2021, 415
[7]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[8]   Review on supercapacitors: Technologies and materials [J].
Gonzalez, Ander ;
Goikolea, Eider ;
Andoni Barrena, Jon ;
Mysyk, Roman .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 58 :1189-1206
[9]   Fluorine-Free Water-in-Salt Electrolyte for Green and Low-Cost Aqueous Sodium-Ion Batteries [J].
Han, Jin ;
Zhang, Huang ;
Varzi, Alberto ;
Passerini, Stefano .
CHEMSUSCHEM, 2018, 11 (21) :3704-3707
[10]  
Hirsh HS, 2020, ADV ENERGY MATER, V10, DOI [10.1002/aenm.202070134, 10.1002/aenm.202001274]