The functional electrolyte containing 2-fluorobenzenesulfonyl fluoride (2FF) additive enhances the performance of LiNi0.8Co0.1Mn0.1O2/graphite batteries by stabilizing the cathode interface

被引:7
|
作者
Hu, Huilin [1 ]
He, Xin [1 ]
Zeng, Xueyi [1 ]
Li, Haijia [1 ]
Sun, Chenhao [1 ]
Fan, Weizhen [1 ,2 ]
Ma, Zhen [1 ]
Nan, Junmin [1 ]
机构
[1] South China Normal Univ, Sch Chem, Guangzhou 510006, Peoples R China
[2] Guangzhou Tinci Mat Technol Co Ltd, Guangzhou 510760, Peoples R China
关键词
Lithium-ion batteries; 2-Fluorobenzenesulfonyl fluoride; Functional electrolyte; Cathode interface; LITHIUM-ION BATTERIES; ELECTROCHEMICAL PERFORMANCE; VOLTAGE; IMPROVE; IMPACT; LAYER;
D O I
10.1016/j.jpowsour.2023.233914
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A functional electrolyte containing conventional carbonate esters solvents, LiPF6 salt, and novel 2-fluorobenze-nesulfonyl fluoride (2FF) additive is developed to stabilize the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode interface and enhance the performance of NCM811/graphite lithium-ion batteries (LIBs). It is indicated that due to the unique C-F and sulfonyl fluoride groups of 2FF, the NCM811/Li half batteries containing 2% 2FF electrolyte show the highest cycling performance, a coulombic efficiency of 98.4% and a capacity retention of 89.4% are obtained after 100 cycles at 0.5C. And compared to the pouch NCM811/graphite full batteries with blank electrolyte, the long cycle performance of the batteries with 2% 2FF is also increased after 500 cycles at 45 degrees C, the discharge capacity retention rate retains at 80.04% and the coulombic efficiency closes to 100%. The spectroscopic characterization and theoretical calculation demonstrate that the electrolyte with 2FF additive preferentially react and generate uniform CEI film. These results show that this 2FF-containing electrolyte can stabilize NCM811 cathode interface, revealing a promising prospect of the commercial application of high-nickel LIBs.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Storage degradation mechanism of layered Ni-rich oxide cathode material LiNi0.8Co0.1Mn0.1O2
    Su, Mingru
    Chen, Yichang
    Liu, Hongjia
    Li, Jinlin
    Fu, Kai
    Zhou, Yu
    Dou, Aichun
    Liu, Yunjian
    ELECTROCHIMICA ACTA, 2022, 422
  • [42] Preparation and Electrochemical Performance of Macroporous Ni-rich LiNi0.8Co0.1Mn0.1O2 Cathode Material
    Li, Tongxin
    Li, Donglin
    Zhang, Qingbo
    Gao, Jianhang
    Kong, Xiangze
    Fan, Xiaoyong
    Gou, Lei
    ACTA CHIMICA SINICA, 2021, 79 (05) : 679 - 684
  • [43] Promoting the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via LaAlO3 coating
    Li, Yong-Chun
    Zhao, Wei-Min
    Xiang, Wei
    Wu, Zhen-Guo
    Yang, Zu-Guang
    Xu, Chun-Liu
    Xu, Ya-Di
    Wang, En-Hui
    Wu, Chun-Jin
    Guo, Xiao-Dong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 766 : 546 - 555
  • [44] Comparative study of the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 and LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion batteries
    Xi, Yukun
    Liu, Yan
    Zhang, Dengke
    Jin, Shuangling
    Zhang, Rui
    Jin, Minglin
    SOLID STATE IONICS, 2018, 327 : 27 - 31
  • [45] Carbonized Polymer Dots Enhancing Interface Stability of LiNi0.8Co0.1Mn0.1O2 Cathodes
    Li, Lin
    Zhang, Yaojian
    Hu, Naifang
    Wang, Kejian
    Liu, Yuehui
    Wang, Xiaogang
    Zhou, Xinhong
    Ma, Jun
    Cui, Guanglei
    ADVANCED MATERIALS INTERFACES, 2023, 10 (20)
  • [46] Regulating the Heat Generation Power of a LiNi0.8Co0.1Mn0.1O2 Cathode by Coating with Reduced Graphene Oxide
    Zhuang, Yunpeng
    Shen, Wenzhuo
    Yan, Jiawei
    Wang, Lei
    Zhou, Chao
    Lei, Puyi
    Zhong, Min
    Zhang, Jiali
    Guo, Shouwu
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) : 4622 - 4630
  • [47] Modification of LiNi0.8Co0.1Mn0.1O2 cathode materials from the perspective of chemical stabilization and kinetic hindrance
    Ren, Xugang
    Li, Yunjiao
    Xi, Xiaoming
    Liu, Shuaiwei
    Xiong, Yike
    Zhang, Dianwei
    Wang, Shan
    Zheng, Junchao
    JOURNAL OF POWER SOURCES, 2021, 499
  • [48] Effect of fluorine on the electrochemical performance of spherical LiNi0.8Co0.1Mn0.1O2 cathode materials via a low temperature method
    Yue, Peng
    Wang, Zhixing
    Wang, Jiexi
    Guo, Huajun
    Xiong, Xunhui
    Li, Xinhai
    POWDER TECHNOLOGY, 2013, 237 : 623 - 626
  • [49] Al-doped ZnO (AZO) modified LiNi0.8Co0.1Mn0.1O2 and their performance as cathode material for lithium ion batteries
    He, Yulin
    Li, Ying
    Liu, Yang
    Li, Wenxian
    Liu, Wenbo
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 251
  • [50] Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 via titanium and boron co-doping
    Zhu, Fangjun
    Shi, You
    Hu, Guorong
    Peng, Zhongdong
    Cao, Yanbing
    Sun, Qian
    Xue, Zhichen
    Zhang, Yinjia
    Du, Ke
    CERAMICS INTERNATIONAL, 2021, 47 (03) : 3070 - 3078