Electrical tunability of inorganic tin perovskites enabled by organic modifiers

被引:8
作者
Haque, Md Azimul [1 ]
Zhu, Tong [2 ]
Hernandez, Luis Huerta [1 ]
Tounesi, Roba [1 ]
Combe, Craig [1 ]
Davaasuren, Bambar [3 ]
Emwas, Abdul-Hamid [3 ]
de Arquer, F. Pelayo Garcia [4 ]
Sargent, Edward H. [2 ]
Baran, Derya [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, KAUST Solar Ctr KSC, Phys Sci & Engn Div PSE, Thuwal 239556900, Saudi Arabia
[2] Univ Toronto, Dept Elect & Comp Engn, 35 St George St, Toronto, ON M5S 1A4, Canada
[3] King Abdullah Univ Sci & Technol KAUST, Corelabs, Thuwal 239556900, Saudi Arabia
[4] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona 08860, Spain
基金
加拿大创新基金会;
关键词
SOLAR-CELLS; BANDGAP; STATES;
D O I
10.1016/j.xcrp.2023.101703
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Achieving control over the transport properties of charge carriers is a crucial aspect of realizing high-performance electronic materials. In metal-halide perovskites, which offer convenient manufacturing traits and tunability for certain optoelectronic applications, this is challenging: the perovskite structure itself poses fundamental limits to maximum dopant incorporation. Here, we demonstrate an organic modifier incorporation strategy capable of modulating the electronic density of states in halide tin perovskites without altering the perovskite lattice, in a similar fashion to substitutional doping in traditional semiconductors. By incorporating organic small molecules and conjugated polymers into cesium tin iodide (CsSnI3) perovskites, we achieve carrier density tunability over 2.7 decades, transition from a temperature-dependent semiconducting to a metallic nature, and high electrical conductivity exceeding 200 S/cm. We leverage these tunable and enhanced electronic properties to achieve a thin-film, lead-free, thermoelectric material with a near room temperature figure of merit of 0.21.
引用
收藏
页数:12
相关论文
共 48 条
[1]   Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals [J].
Abdelhady, Ahmed L. ;
Saidaminov, Makhsud I. ;
Murali, Banavoth ;
Adinolfi, Valerio ;
Voznyy, Oleksandr ;
Katsiev, Khabiboulakh ;
Alarousu, Erkki ;
Comin, Riccardo ;
Dursun, Ibrahim ;
Sinatra, Lutfan ;
Sargent, Edward H. ;
Mohammed, Omar F. ;
Bakr, Osman M. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (02) :295-301
[2]   Ab initio molecular simulations with numeric atom-centered orbitals [J].
Blum, Volker ;
Gehrke, Ralf ;
Hanke, Felix ;
Havu, Paula ;
Havu, Ville ;
Ren, Xinguo ;
Reuter, Karsten ;
Scheffler, Matthias .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) :2175-2196
[3]   Fast-Response Oxygen Optical Fiber Sensor based on PEA2SnI4 Perovskite with Extremely Low Limit of Detection [J].
Cai, Shunshuo ;
Ju, Yangyang ;
Wang, Yangming ;
Li, Xiaowei ;
Guo, Tuan ;
Zhong, Haizheng ;
Huang, Lingling .
ADVANCED SCIENCE, 2022, 9 (08)
[4]   Efficient Dye-Sensitized Solar Cells Based on Hydroquinone/Benzoquinone as a Bioinspired Redox Couple [J].
Cheng, Ming ;
Yang, Xichuan ;
Zhang, Fuguo ;
Zhao, Jianghua ;
Sun, Licheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (39) :9896-9899
[5]   p-Type molecular doping by charge transfer in halide perovskite† [J].
Euvrard, Julie ;
Gunawan, Oki ;
Zhong, Xinjue ;
Harvey, Steven P. ;
Kahn, Antoine ;
Mitzi, David B. .
MATERIALS ADVANCES, 2021, 2 (09) :2956-2965
[6]   Electrical doping in halide perovskites [J].
Euvrard, Julie ;
Yan, Yanfa ;
Mitzi, David B. .
NATURE REVIEWS MATERIALS, 2021, 6 (06) :531-549
[7]   Role of Dopants in Organic and Halide Perovskite Energy Conversion Devices [J].
Haque, Md Azimul ;
Villalva, Diego Rosas ;
Hernandez, Luis Huerta ;
Tounesi, Roba ;
Jang, Soyeong ;
Baran, Derya .
CHEMISTRY OF MATERIALS, 2021, 33 (21) :8147-8172
[8]   Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions [J].
Havu, V. ;
Blum, V. ;
Havu, P. ;
Scheffler, M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (22) :8367-8379
[9]   Thermoelectric Performance of Lead-Free Two-Dimensional Halide Perovskites Featuring Conjugated Ligands [J].
Hsu, Sheng-Ning ;
Zhao, Wenchao ;
Gao, Yao ;
Akriti ;
Segovia, Mauricio ;
Xu, Xianfan ;
Boudouris, Bryan W. ;
Dou, Letian .
NANO LETTERS, 2021, 21 (18) :7839-7844
[10]   One-hundred-three compound band-structure benchmark of post-self-consistent spin-orbit coupling treatments in density functional theory [J].
Huhn, William P. ;
Blum, Volker .
PHYSICAL REVIEW MATERIALS, 2017, 1 (03)