Electrospinning to fabricate composite membranes with improved superhydrophobic properties for efficient oil-water separation

被引:5
|
作者
Wang, Xiaohui [1 ]
Li, Xinmei [1 ,2 ]
机构
[1] Xinjiang Univ, Modern Ind Coll Intelligent Mfg, Urumqi, Xinjiang, Peoples R China
[2] Xinjiang Univ, Urumqi, Peoples R China
来源
关键词
Oil -water separation; Magnetic nanoparticle; Electrospinning/; Superhydrophobic; Membrane; FACILE PREPARATION; ROBUST; SPONGE; FIBERS;
D O I
10.1016/j.mtcomm.2023.107759
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The pursuit of developing quickly prepared, multifunctional, selective, and highly efficient fiber membranes has gained significant attention, particularly in oil-water separation treatment. The present study successfully fabricated composite membranes consisting of Polystyrene/polyacrylonitrile-polyvinylidene fluoride/polydimethylsiloxane- Iron tetraoxide nanoparticles (PS/PAN-PVDF/PDMS@Fe3O4) through the electrospinning technique. The prepared composite membranes' surface morphology, wettability, and separation efficiency were tested and characterized. The results demonstrate the exceptional superhydrophobic and lipophilic properties of the composite membrane. The Fe3O4 nanoparticle-doped fiber membrane exhibits consistent superhydrophobicity (contact angle exceeding 150 degrees) in diverse acid and alkali environments while demonstrating controlled motion in a magnetic field. The fabricated composite fiber membrane exhibited effective adsorption of various oils, including peanut oil, silicone oil, and Span 80, achieving adsorption capacities ranging from 60 to 100 g/g. The membrane exhibited separation flux and efficiency values of 8067 L.m- 2h- 1 and 97.6% under gravity-driven conditions, respectively. Even after 40 cycles of separating acidic-alkaline oil-water mixtures, the separation flux remained at 5000 L.m- 2.h-1. Hence, the prepared composite fiber membrane can be applied in oil-water separation.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Simple preparation of superhydrophobic copper foam for efficient oil-water separation
    Cai, Wen
    Ke, Qiang
    Feng, Mingyue
    Ma, Yong
    Kang, Antai
    Jiang, Min
    Fang, Shenwen
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 65
  • [22] Sawdust-based superhydrophobic pellets for efficient oil-water separation
    Latthe, Sanjay S.
    Kodag, Vishnu S.
    Sutar, Rajaram S.
    Bhosale, Appasaheb K.
    Nagappan, Saravanan
    Ha, Chang-Sik
    Sadasivuni, Kishor Kumar
    Kulal, Shivaji R.
    Liu, Shanhu
    Xing, Ruimin
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 243
  • [23] Bionic silanized cellulose superhydrophobic paper for efficient oil-water separation
    Ning, Shenghui
    Tian, Guangyi
    Yang, Fuchao
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 353
  • [24] Crosslinked electrospinning membranes with contamination resistant properties for highly efficient oil–water separation
    Haitao Meng
    Haiou Liang
    Tong Xu
    Jie Bai
    Chunping Li
    Journal of Polymer Research, 2021, 28
  • [25] Hierarchically structured superhydrophobic and superoleophilic nanofibrous membranes for effective oil-water separation
    Wang, Fei
    Huang, Liqian
    Ding, Bin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [26] Development of superhydrophobic PVA/CNC nanofibrous membranes for enhanced oil-water separation
    Bang, Junsik
    Jung, Seungoh
    Kim, Jungkyu
    Park, Sangwoo
    Yun, Heecheol
    Hahm, Jiyeon
    Won, Sungwook
    Kwak, Hyo Won
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [27] Electrospun Differential Wetting Membranes for Efficient Oil-Water Separation
    Ganesh, Venkatesan Anand
    Ranganath, Anupama Sargur
    Baji, Avinash
    Wong, Him Cheng
    Raut, Hemant Kumar
    Sahay, Rahul
    Ramakrishna, Seeram
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2016, 301 (07) : 812 - 817
  • [28] Simple preparation of UV-absorbing and magnetic superhydrophobic membranes by one-step electrospinning for effective oil-water separation
    Wang, Xiaohui
    Li, Xinmei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 337
  • [29] Superhydrophobic and magnetic Fe3O4/RGO/SA composite membranes for oil-water separation
    Zhang, Xin
    Mao, Zhicheng
    Ding, Jijun
    Chen, Haixia
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 312
  • [30] Magnetoactive Superhydrophobic Foams for Oil-Water Separation
    Calcagnile, Paola
    Fragouli, Despina
    Bayer, Ilker S.
    Anyfantis, George C.
    Athanassiou, Athanassia
    ADAPTIVE, ACTIVE AND MULTIFUNCTIONAL SMART MATERIALS SYSTEMS, 2013, 77 : 159 - 164