Effect of scanning speed on fatigue behavior of 316L stainless steel fabricated by laser powder bed fusion

被引:9
作者
Cao, Yinfeng [1 ]
Moumni, Ziad [1 ,2 ]
Zhu, Jihong [1 ,4 ]
Gu, Xiaojun [1 ,3 ]
Zhang, Yahui [1 ]
Zhai, Xingyue [1 ]
Zhang, Weihong [1 ]
机构
[1] Northwestern Polytech Univ, State IJR Ctr Aerosp Design & Addit Mfg, Xian 710072, Peoples R China
[2] Inst Polytech Paris, ENSTA Paris, UME, F-91120 Palaiseau, France
[3] Northwestern Polytech Univ, Inst Intelligence Mat & Struct, Unmanned Syst Technol, Xian 710072, Peoples R China
[4] Northwestern Polytech Univ, MIIT Lab Met Addit Mfg & Innovat Design, Xian 710072, Peoples R China
关键词
Fatigue; Laser powder bed fusion; 316L steel; Scanning speed; Dislocation-density-based crystal plasticity; Stored energy; PROCESS PARAMETERS; STORED ENERGY; PLASTIC-DEFORMATION; SURFACE-ROUGHNESS; HEAT; MICROSTRUCTURE; DENSITY; PROPERTY;
D O I
10.1016/j.jmatprotec.2023.118043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of the scanning speed on the fatigue behavior of Laser Powder Bed Fusion (LPBF)-fabricated 316L steel is investigated in this paper. To this end, fatigue limits of specimen manufactured by different scanning speeds are determined by the self-heating approach. EBSD experiments and relative density measurements are carried out to characterize the microstructure and porosity. To analyze the influence of scanning speed on the microstructure (grain morphology, texture, dislocation density and stored energy) and fatigue property, a dislocation-density, crystal plasticity and stored energy-based fatigue model is developed. The inverse optimization method is combined with EBSD experiments and uniaxial tension experiments to identify the model parameters. The experimental results show a critical scanning speed, below which the fatigue limit stays almost unchanged and decreases drastically while the scanning speed is increased beyond. Furthermore, the simulation results show that the predicted fatigue limits correspond well to the experimental fatigue ones. From experimental and numerical results, it is deduced that the critical stored energy density and maximum temperature variation are functions of the porosity and can be used to differentiate the types of fatigue: microstructure-dominated or defect-dominated. This article provides new insights which can be further used in the optimization of fatigue behavior of LPBF 316L steel with respect to the scanning speed.
引用
收藏
页数:15
相关论文
共 63 条
[1]   Effects of porosity on the mechanical properties of additively manufactured components: a critical review [J].
Al-Maharma, Ahmad Y. ;
Patil, Sandeep P. ;
Markert, Bernd .
MATERIALS RESEARCH EXPRESS, 2020, 7 (12)
[2]   Texture Analysis with MTEX - Free and Open Source Software Toolbox [J].
Bachmann, F. ;
Hielscher, R. ;
Schaeben, H. .
TEXTURE AND ANISOTROPY OF POLYCRYSTALS III, 2010, 160 :63-+
[3]   Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn [J].
Barnett, MR ;
Keshavarz, Z ;
Beer, AG ;
Atwell, D .
ACTA MATERIALIA, 2004, 52 (17) :5093-5103
[4]   Dislocation mechanics of creep [J].
Blum, W. ;
Eisenlohr, P. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 510-11 :7-13
[5]   A multiscale high cycle fatigue approach based on shakedown and cohesive zone theories-Application for additive-manufactured 316L steel [J].
Cao, Yinfeng ;
Moumni, Ziad ;
Zhu, Jihong ;
Gu, Xiaojun ;
Zhang, Weihong .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 851
[6]   Comparative investigation of the fatigue limit of additive-manufactured and rolled 316 steel based on self-heating approach [J].
Cao, Yinfeng ;
Moumni, Ziad ;
Zhu, Jihong ;
Zhang, Yahui ;
You, Yajun ;
Zhang, Weihong .
ENGINEERING FRACTURE MECHANICS, 2020, 223
[7]   Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations [J].
Cereceda, David ;
Diehl, Martin ;
Roters, Franz ;
Raabe, Dierk ;
Manuel Perlado, J. ;
Marian, Jaime .
INTERNATIONAL JOURNAL OF PLASTICITY, 2016, 78 :242-265
[8]   Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? [J].
Chen, Bo ;
Jiang, Jun ;
Dunne, Fionn P. E. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2018, 101 :213-229
[9]   Microstructurally-sensitive fatigue crack nucleation in Ni-based single and oligo crystals [J].
Chen, Bo ;
Jiang, Jun ;
Dunne, Fionn P. E. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2017, 106 :15-33
[10]   Enhancement of an additive-manufactured austenitic stainless steel by post-manufacture heat-treatment [J].
Chen, Nan ;
Ma, Guoqiang ;
Zhu, Wanquan ;
Godfrey, Andrew ;
Shen, Zhijian ;
Wu, Guilin ;
Huang, Xiaoxu .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 759 :65-69