Rarity: discovering rare cell populations from single-cell imaging data

被引:3
作者
Martens, Kaspar [1 ]
Bortolomeazzi, Michele [2 ,3 ]
Montorsi, Lucia [2 ,3 ]
Spencer, Jo [3 ]
Ciccarelli, Francesca [2 ,4 ]
Yau, Christopher [1 ,5 ]
机构
[1] Alan Turing Inst, London NW1 2DB, England
[2] Francis Crick Inst, London NW1 1AT, England
[3] Kings Coll London, London WC2R 2LS, England
[4] Queen Mary Univ London, Barts Canc Inst, Ctr Canc Genom & Computat Biol, Charterhouse Sq, London EC1M 6BQ, England
[5] Univ Oxford, John Radcliffe Hosp, Womens Ctr Level 3, Nuffield Dept Womens & Reprod Hlth, Oxford OX3 9DU, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”; 英国医学研究理事会; 英国惠康基金;
关键词
T-CELLS; VISUALIZATION; IDENTITY; FLOW;
D O I
10.1093/bioinformatics/btad750
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Cell type identification plays an important role in the analysis and interpretation of single-cell data and can be carried out via supervised or unsupervised clustering approaches. Supervised methods are best suited where we can list all cell types and their respective marker genes a priori, while unsupervised clustering algorithms look for groups of cells with similar expression properties. This property permits the identification of both known and unknown cell populations, making unsupervised methods suitable for discovery. Success is dependent on the relative strength of the expression signature of each group as well as the number of cells. Rare cell types therefore present a particular challenge that is magnified when they are defined by differentially expressing a small number of genes.Results Typical unsupervised approaches fail to identify such rare subpopulations, and these cells tend to be absorbed into more prevalent cell types. In order to balance these competing demands, we have developed a novel statistical framework for unsupervised clustering, named Rarity, that enables the discovery process for rare cell types to be more robust, consistent, and interpretable. We achieve this by devising a novel clustering method based on a Bayesian latent variable model in which we assign cells to inferred latent binary on/off expression profiles. This lets us achieve increased sensitivity to rare cell populations while also allowing us to control and interpret potential false positive discoveries. We systematically study the challenges associated with rare cell type identification and demonstrate the utility of Rarity on various IMC datasets.Availability and implementation Implementation of Rarity together with examples is available from the Github repository (https://github.com/kasparmartens/rarity).
引用
收藏
页数:15
相关论文
共 37 条
[1]   Predicting Cell Populations in Single Cell Mass Cytometry Data [J].
Abdelaal, Tamim ;
van Unen, Vincent ;
Hollt, Thomas ;
Koning, Frits ;
Reinders, Marcel J. T. ;
Mahfouz, Ahmed .
CYTOMETRY PART A, 2019, 95A (07) :769-781
[2]   Multiplexed ion beam imaging of human breast tumors [J].
Angelo, Michael ;
Bendall, Sean C. ;
Finck, Rachel ;
Hale, Matthew B. ;
Hitzman, Chuck ;
Borowsky, Alexander D. ;
Levenson, Richard M. ;
Lowe, John B. ;
Liu, Scot D. ;
Zhao, Shuchun ;
Natkunam, Yasodha ;
Nolan, Garry P. .
NATURE MEDICINE, 2014, 20 (04) :436-+
[3]   Dimensionality reduction for visualizing single-cell data using UMAP [J].
Becht, Etienne ;
McInnes, Leland ;
Healy, John ;
Dutertre, Charles-Antoine ;
Kwok, Immanuel W. H. ;
Ng, Lai Guan ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :38-+
[4]   A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially-resolved tissue phenotyping at single-cell resolution [J].
Bortolomeazzi, Michele ;
Montorsi, Lucia ;
Temelkovski, Damjan ;
Keddar, Mohamed Reda ;
Acha-Sagredo, Amelia ;
Pitcher, Michael J. ;
Basso, Gianluca ;
Laghi, Luigi ;
Rodriguez-Justo, Manuel ;
Spencer, Jo ;
Ciccarelli, Francesca D. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[5]   Identification of non-cancer cells from cancer transcriptomic data [J].
Bortolomeazzi, Michele ;
Keddar, Mohamed Reda ;
Ciccarelli, Francesca D. ;
Benedetti, Lorena .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2020, 1863 (06)
[6]   Hierarchical Modeling for Rare Event Detection and Cell Subset Alignment across Flow Cytometry Samples [J].
Cron, Andrew ;
Gouttefangeas, Cecile ;
Frelinger, Jacob ;
Lin, Lin ;
Singh, Satwinder K. ;
Britten, Cedrik M. ;
Welters, Marij J. P. ;
van der Burg, Sjoerd H. ;
West, Mike ;
Chan, Cliburn .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (07)
[7]  
Cui H., 2023, bioRxiv, P2023, DOI [10.1101/2023.04.30.538439, DOI 10.1101/2023.04.30.538439]
[8]   A Map of Human Type 1 Diabetes Progression by Imaging Mass Cytometry [J].
Damond, Nicolas ;
Engler, Stefanie ;
Zanotelli, Vito R. T. ;
Schapiro, Denis ;
Wasserfall, Clive H. ;
Kusmartseva, Irina ;
Nick, Harry S. ;
Thorel, Fabrizio ;
Herrera, Pedro L. ;
Atkinson, Mark A. ;
Bodenmiller, Bernd .
CELL METABOLISM, 2019, 29 (03) :755-+
[9]   cytomapper: an R/Bioconductor package for visualization of highly multiplexed imaging data [J].
Eling, Nils ;
Damond, Nicolas ;
Hoch, Tobias ;
Bodenmiller, Bernd .
BIOINFORMATICS, 2020, 36 (24) :5706-5708
[10]   GapClust is a light-weight approach distinguishing rare cells from voluminous single cell expression profiles [J].
Fa, Botao ;
Wei, Ting ;
Zhou, Yuan ;
Johnston, Luke ;
Yuan, Xin ;
Ma, Yanran ;
Zhang, Yue ;
Yu, Zhangsheng .
NATURE COMMUNICATIONS, 2021, 12 (01)