Experimental Investigation on the Effects of Direct Injection Timing on the Combustion, Performance and Emission Characteristics of Methanol/Gasoline Dual-Fuel Spark Turbocharged Ignition (DFSI) Engine with Different Injection Pressures under High Load

被引:1
|
作者
Wang, Jun [1 ]
Tian, Huayu [1 ]
Zhang, Ran [1 ]
Shen, Bo [2 ]
Su, Yan [2 ]
Yu, Hao [2 ]
Zhang, Yulin [2 ]
机构
[1] Sinopec Res Inst Petr Proc, Res Inst Petr Proc, Beijing 100083, Peoples R China
[2] Jilin Univ, Coll Automot Engn, Changchun 130022, Peoples R China
关键词
dual fuel; methanol; injection timing; performance; combustion; emission; METHANOL;
D O I
10.3390/en16247921
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The exceptional properties of methanol, such as its high octane number and latent heat of evaporation, make it an advantageous fuel for efficient utilization in dual-fuel combustion techniques. The aim of this study is to investigate the effect of direct methanol injection timing on the combustion, performance and emission characteristics of a dual-fuel spark ignition engine at different injection pressures. We conducted four different direct injection pressure tests ranging from 360 degrees ahead to 30 degrees CA ahead at 30 degrees CA intervals. The experimental results indicate that regardless of the injection pressure, altering the methanol injection timing from -360 degrees to -30 degrees CA ATDC leads to distinct combustion behavior and changes in the combustion phase. Initially, as the injection timing is delayed, the combustion process accelerates, which is followed by a slower combustion phase. Additionally, the combustion phase itself experiences a delay and then advances. Regarding performance characteristics, both the brake thermal efficiency (BTE) and exhaust gas temperature (EGT) exhibit a consistent pattern of first increasing and then decreasing as the injection timing is delayed. This suggests that there is an optimal injection timing window that can enhance both the engine's efficiency and its ability to manage exhaust temperature. In terms of emissions, there are different trends in this process due to the different conditions under which the individual emissions are produced, with CO and HC showing a decreasing and then increasing trend, and NOx showing the opposite trend. In conclusion, regardless of the injection pressure employed, adopting a thoughtful and well-designed injection strategy can significantly improve the combustion performance and emission characteristics of the engine. The findings of this study shed light on the potential of methanol dual-fuel combustion and provide valuable insights for optimizing engine operation in terms of efficiency and emissions control.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Effects of injection timing on mixture formation, combustion, and emission characteristics in a n-butanol direct injection spark ignition engine
    Liu, Zengbin
    Zhen, Xudong
    Geng, Jie
    Tian, Zhi
    ENERGY, 2024, 295
  • [22] The operation of a direct injection spark ignition engine fueled with gasoline-hydrogen mixtures in dual-fuel mode
    Mazeh, Raif
    Chiriac, Radu
    TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY (TMREES19), 2019, 2123
  • [23] Effects of methanol energy substitution ratio and diesel injection timing on a methanol/diesel dual-fuel direct injection engine
    Yin, Xiaojun
    Yan, Yu
    Ren, Xianfeng
    Yu, Lixin
    Duan, Hao
    Hu, Erjiang
    Zeng, Ke
    FUEL, 2025, 382
  • [24] Numerical Study of Engine Performance and Emissions for Port Injection of Ammonia into a Gasoline\Ethanol Dual-Fuel Spark Ignition Engine
    Salek, Farhad
    Babaie, Meisam
    Shakeri, Amin
    Hosseini, Seyed Vahid
    Bodisco, Timothy
    Zare, Ali
    APPLIED SCIENCES-BASEL, 2021, 11 (04): : 1 - 17
  • [25] Combustion and emission characteristics of high-pressure ammonia direct injection marine dual-fuel engine
    Park, Cheolwoong
    Jang, Yonghun
    Jang, Ilpum
    Kim, Minki
    Kim, Yongrae
    FUEL, 2025, 385
  • [26] Effects of hydrogen direct injection on combustion and emission characteristics of a hydrogen/Acetone-Butanol-Ethanol dual-fuel spark ignition engine under lean-burn conditions
    Yu, Xiumin
    Li, Decheng
    Yang, Song
    Sun, Ping
    Guo, Zezhou
    Yang, Hang
    Li, Yinan
    Wang, Tianqi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (58) : 34193 - 34203
  • [27] Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion
    Ma, Shuaiying
    Zheng, Zunqing
    Liu, Haifeng
    Zhang, Quanchang
    Yao, Mingfa
    APPLIED ENERGY, 2013, 109 : 202 - 212
  • [28] Effects of advanced injection timing and inducted gaseous fuel on performance, combustion and emission characteristics of a diesel engine operated in dual-fuel mode
    Nayak, Swarup Kumar
    Anh Tuan Hoang
    Nizetic, Sandro
    Xuan Phuong Nguyen
    Tri Hieu Le
    FUEL, 2022, 310
  • [29] Effects of Ignition Timing on Combustion Characteristics of a Gasoline Direct Injection Engine with Added Compressed Natural Gas under Partial Load Conditions
    Zhang, Peng
    Ni, Jimin
    Shi, Xiuyong
    Yin, Sheng
    Zhang, Dezheng
    PROCESSES, 2021, 9 (05)
  • [30] Experimental Investigation on the Emissions of a Port Fuel Injection Spark Ignition Engine Fueled with Methanol-Gasoline Blends
    Yao, Dongwei
    Ling, Xinchen
    Wu, Feng
    ENERGY & FUELS, 2016, 30 (09) : 7428 - 7434