Identities involving sum of divisors, compositions and integer partitions hiding in the q-binomial theorem

被引:1
作者
Alegri, Mateus [1 ]
机构
[1] Univ Fed Sergipe, Dept Math, DMAI, Itabaiana, SE, Brazil
来源
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES | 2024年 / 18卷 / 01期
关键词
Compositions; Partitions; q-Binomial theorem; k-Colored partitions; Jacobi identity; Euler identity; Gauss identity;
D O I
10.1007/s40863-023-00389-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show some identities come from the q-binomial theorem and the triple product of Jacobi. Some of these identities relating the function sum of divisor of a positive integer n and the number of integer partitions of n. As corollary we found the next equation, for n >= 1. Sigma(n)(l=1) k(l)/l! Sigma((w1, w2, ... , wl)is an element of Cn) sigma(1)(w(1))sigma(1)(w(2)) ... sigma(1)(w(l))/w(1)w(2) ... w(l) = p(k)(n), where sigma(1)(n) is the sum of all positive divisors of n, p(k)(n) is the number of k-colored integer partitions of n, and C-n is the set of integer compositions of n.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 25 条
[1]  
Alegri M., DISCRETE MATH
[2]  
ANDREWS G. E., 1999, Encyclopedia of Mathematics and its Applications, V71, DOI [10.1017/CBO9781107325937, DOI 10.1017/CBO9781107325937]
[3]  
Andrews GE., 1976, ENCY MATH ITS APPL, V2
[4]  
Andrews GE., 1986, Q SERIES THEIR DEV A, P10
[5]  
Andrews GE., 2004, INTEGER PARTITIONS, DOI [10.1017/CBO9781139167239, DOI 10.1017/CBO9781139167239]
[6]  
Bailey WN., 1935, BASIC HYPERGEOMETRIC, P65
[7]  
Berndt Bruce C., 2006, Number Theory in the Spirit of Ramanujan, V34, DOI 10.1090/stml/034
[8]  
Charalambides C., 2001, ENUMERATIVE COMBINAT
[9]   Some inequalities for k-colored partition functions [J].
Chern, Shane ;
Fu, Shishuo ;
Tang, Dazhao .
RAMANUJAN JOURNAL, 2018, 46 (03) :713-725
[10]  
Euler L., 1988, INTRO ANAL INFINITOR