Medical imaging and multimodal artificial intelligence models for streamlining and enhancing cancer care: opportunities and challenges

被引:7
作者
Pierre, Kevin [1 ,2 ,3 ]
Gupta, Manas [1 ,2 ]
Raviprasad, Abheek [1 ,2 ,4 ]
Razavi, Seyedeh Mehrsa Sadat [1 ,2 ,4 ]
Patel, Anjali [1 ,2 ,4 ]
Peters, Keith [1 ,2 ,3 ]
Hochhegger, Bruno [1 ,2 ,3 ]
Mancuso, Anthony [1 ,2 ,3 ]
Forghani, Reza [1 ,2 ,3 ,5 ,6 ]
机构
[1] Univ Florida, Coll Med, RAIL, Dept Radiol, 1600 SW Archer Rd, Gainesville, FL 32610 USA
[2] Univ Florida, Coll Med, Norman Fixel Inst Neurol Dis, 1600 SW Archer Rd, Gainesville, FL 32610 USA
[3] Univ Florida, Coll Med, Dept Radiol, Gainesville, FL 32610 USA
[4] Univ Florida, Coll Med, Gainesville, FL USA
[5] Univ Florida, Coll Med, Div Med Phys, Gainesville, FL USA
[6] Univ Florida, Coll Med, Dept Neurol, Div Movement Disorders, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Artificial intelligence (AI); deep learning; radiomics; medical imaging; radiology; digital pathology; multimodal; informatics platforms;
D O I
10.1080/14737140.2023.2286001
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
IntroductionArtificial intelligence (AI) has the potential to transform oncologic care. There have been significant developments in AI applications in medical imaging and increasing interest in multimodal models. These are likely to enable improved oncologic care through more precise diagnosis, increasingly in a more personalized and less invasive manner. In this review, we provide an overview of the current state and challenges that clinicians, administrative personnel and policy makers need to be aware of and mitigate for the technology to reach its full potential.Areas coveredThe article provides a brief targeted overview of AI, a high-level review of the current state and future potential AI applications in diagnostic radiology and to a lesser extent digital pathology, focusing on oncologic applications. This is followed by a discussion of emerging approaches, including multimodal models. The article concludes with a discussion of technical, regulatory challenges and infrastructure needs for AI to realize its full potential.Expert opinionThere is a large volume of promising research, and steadily increasing commercially available tools using AI. For the most advanced and promising precision diagnostic applications of AI to be used clinically, robust and comprehensive quality monitoring systems and informatics platforms will likely be required.
引用
收藏
页码:1265 / 1279
页数:15
相关论文
共 123 条
[21]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[22]   Using machine learning for sequence-level automated MRI protocol selection in neuroradiology [J].
Brown, Andrew D. ;
Marotta, Thomas R. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2018, 25 (05) :568-571
[23]   A Natural Language Processing-based Model to Automate MRI Brain Protocol Selection and Prioritization [J].
Brown, Andrew D. ;
Marotta, Thomas R. .
ACADEMIC RADIOLOGY, 2017, 24 (02) :160-166
[24]   Workload for radiologists during on-call hours: dramatic increase in the past 15 years [J].
Bruls, R. J. M. ;
Kwee, R. M. .
INSIGHTS INTO IMAGING, 2020, 11 (01)
[25]   LesionQuant for Assessment of MRI in Multiple Sclerosis-A Promising Supplement to the Visual Scan Inspection [J].
Brune, Synne ;
Hogestol, Einar A. ;
Cengija, Vanja ;
Berg-Hansen, Pal ;
Sowa, Piotr ;
Nygaard, Gro O. ;
Harbo, Hanne F. ;
Beyer, Mona K. .
FRONTIERS IN NEUROLOGY, 2020, 11
[26]   Deep learning based tissue analysis predicts outcome in colorectal cancer [J].
Bychkov, Dmitrii ;
Linder, Nina ;
Turkki, Riku ;
Nordling, Stig ;
Kovanen, Panu E. ;
Verrill, Clare ;
Walliander, Margarita ;
Lundin, Mikael ;
Haglund, Caj ;
Lundin, Johan .
SCIENTIFIC REPORTS, 2018, 8
[27]   Future of Artificial Intelligence Applications in Cancer Care: A Global Cross-Sectional Survey of Researchers [J].
Cabral, Bernardo Pereira ;
Braga, Luiza Amara Maciel ;
Syed-Abdul, Shabbir ;
Mota, Fabio Batista .
CURRENT ONCOLOGY, 2023, 30 (03) :3432-3446
[28]  
Chang HY, 2019, J PATHOL TRANSL MED, V53, P1
[29]   Imaging Phenotypes of Breast Cancer Heterogeneity in Preoperative Breast Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) Scans Predict 10-Year Recurrence [J].
Chitalia, Rhea D. ;
Rowland, Jennifer ;
McDonald, Elizabeth S. ;
Pantalone, Lauren ;
Cohen, Eric A. ;
Gastounioti, Aimilia ;
Feldman, Michael ;
Schnall, Mitchell ;
Conant, Emily ;
Kontos, Despina .
CLINICAL CANCER RESEARCH, 2020, 26 (04) :862-869
[30]   An artificial intelligence-accelerated 2-minute multi-shot echo planar imaging protocol for comprehensive high-quality clinical brain imaging [J].
Clifford, Bryan ;
Conklin, John ;
Huang, Susie Y. ;
Feiweier, Thorsten ;
Hosseini, Zahra ;
Goncalves Filho, Augusto Lio M. ;
Tabari, Azadeh ;
Demir, Serdest ;
Lo, Wei-Ching ;
Longo, Maria Gabriela Figueiro ;
Lev, Michael ;
Schaefer, Pam ;
Rapalino, Otto ;
Setsompop, Kawin ;
Bilgic, Berkin ;
Cauley, Stephen .
MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (05) :2453-2463