Medical imaging and multimodal artificial intelligence models for streamlining and enhancing cancer care: opportunities and challenges

被引:6
作者
Pierre, Kevin [1 ,2 ,3 ]
Gupta, Manas [1 ,2 ]
Raviprasad, Abheek [1 ,2 ,4 ]
Razavi, Seyedeh Mehrsa Sadat [1 ,2 ,4 ]
Patel, Anjali [1 ,2 ,4 ]
Peters, Keith [1 ,2 ,3 ]
Hochhegger, Bruno [1 ,2 ,3 ]
Mancuso, Anthony [1 ,2 ,3 ]
Forghani, Reza [1 ,2 ,3 ,5 ,6 ]
机构
[1] Univ Florida, Coll Med, RAIL, Dept Radiol, 1600 SW Archer Rd, Gainesville, FL 32610 USA
[2] Univ Florida, Coll Med, Norman Fixel Inst Neurol Dis, 1600 SW Archer Rd, Gainesville, FL 32610 USA
[3] Univ Florida, Coll Med, Dept Radiol, Gainesville, FL 32610 USA
[4] Univ Florida, Coll Med, Gainesville, FL USA
[5] Univ Florida, Coll Med, Div Med Phys, Gainesville, FL USA
[6] Univ Florida, Coll Med, Dept Neurol, Div Movement Disorders, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Artificial intelligence (AI); deep learning; radiomics; medical imaging; radiology; digital pathology; multimodal; informatics platforms;
D O I
10.1080/14737140.2023.2286001
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
IntroductionArtificial intelligence (AI) has the potential to transform oncologic care. There have been significant developments in AI applications in medical imaging and increasing interest in multimodal models. These are likely to enable improved oncologic care through more precise diagnosis, increasingly in a more personalized and less invasive manner. In this review, we provide an overview of the current state and challenges that clinicians, administrative personnel and policy makers need to be aware of and mitigate for the technology to reach its full potential.Areas coveredThe article provides a brief targeted overview of AI, a high-level review of the current state and future potential AI applications in diagnostic radiology and to a lesser extent digital pathology, focusing on oncologic applications. This is followed by a discussion of emerging approaches, including multimodal models. The article concludes with a discussion of technical, regulatory challenges and infrastructure needs for AI to realize its full potential.Expert opinionThere is a large volume of promising research, and steadily increasing commercially available tools using AI. For the most advanced and promising precision diagnostic applications of AI to be used clinically, robust and comprehensive quality monitoring systems and informatics platforms will likely be required.
引用
收藏
页码:1265 / 1279
页数:15
相关论文
共 123 条
[1]   NS-HGlio: A generalizable and repeatable HGG segmentation and volumetric measurement AI algorithm for the longitudinal MRI assessment to inform RANO in trials and clinics [J].
Abayazeed, Aly H. ;
Abbassy, Ahmed ;
Mueeller, Michael ;
Hill, Michael ;
Qayati, Mohamed ;
Mohamed, Shady ;
Mekhaimar, Mahmoud ;
Raymond, Catalina ;
Dubey, Prachi ;
Nael, Kambiz ;
Rohatgi, Saurabh ;
Kapare, Vaishali ;
Kulkarni, Ashwini ;
Shiang, Tina ;
Kumar, Atul ;
Andratschke, Nicolaus ;
Willmann, Jonas ;
Brawanski, Alexander ;
De Jesus, Reordan ;
Tuna, Ibrahim ;
Fung, Steve H. ;
Landolfi, Joseph C. ;
Ellingson, Benjamin M. ;
Reyes, Mauricio .
NEURO-ONCOLOGY ADVANCES, 2023, 5 (01)
[2]   Defining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLC [J].
Aerts, Hugo J. W. L. ;
Grossmann, Patrick ;
Tan, Yongqiang ;
Oxnard, Geoffrey G. ;
Rizvi, Naiyer ;
Schwartz, Lawrence H. ;
Zhao, Binsheng .
SCIENTIFIC REPORTS, 2016, 6
[3]   Artificial Intelligence-assisted Prostate Cancer Diagnosis: Radiologic-Pathologic Correlation [J].
Alcala Mata, Lidia ;
Antonio Retamero, Juan ;
Gupta, Rajan T. ;
Garcia Figueras, Roberto ;
Luna, Antonio .
RADIOGRAPHICS, 2021, 41 (06) :1676-1697
[4]   Evaluation of an artificial intelligence clinical trial matching system in Australian lung cancer patients [J].
Alexander, Marliese ;
Solomon, Benjamin ;
Ball, David L. ;
Sheerin, Mimi ;
Dankwa-Mullan, Irene ;
Preininger, Anita M. ;
Jackson, Gretchen Purcell ;
Herath, Dishan M. .
JAMIA OPEN, 2020, 3 (02) :209-215
[5]   Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer [J].
Ali, H. Raza ;
Dariush, Aliakbar ;
Provenzano, Elena ;
Bardwell, Helen ;
Abraham, Jean E. ;
Iddawela, Mahesh ;
Vallier, Anne-Laure ;
Hiller, Louise ;
Dunn, Janet. A. ;
Bowden, Sarah J. ;
Hickish, Tamas ;
McAdam, Karen ;
Houston, Stephen ;
Irwin, Mike J. ;
Pharoah, Paul D. P. ;
Brenton, James D. ;
Walton, Nicholas A. ;
Earl, Helena M. ;
Caldas, Carlos .
BREAST CANCER RESEARCH, 2016, 18
[6]  
Amin M. B, 2017, AJCC Cancer Staging Manual
[7]  
[Anonymous], 2022, Intended use of imaging software for intracranial large vessel occlusion - letter to health care providers
[8]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography (vol 25, pg 954, 2019) [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (08) :1319-1319
[9]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[10]   Radiomics and deep learning in lung cancer [J].
Avanzo, Michele ;
Stancanello, Joseph ;
Pirrone, Giovanni ;
Sartor, Giovanna .
STRAHLENTHERAPIE UND ONKOLOGIE, 2020, 196 (10) :879-887