Lanthanide exchange fields and intermultiplet transitions in permanent-magnet materials

被引:1
|
作者
Kuz'min, Michael D. [1 ]
Richter, Manuel [2 ,3 ]
机构
[1] Aix Marseille Univ, IM2NP CNRS UMR 7334, Campus St Jerome,Case 142, F-13397 Marseille, France
[2] Leibniz IFW Dresden, Helmholtzstr 20, D-01069 Dresden, Germany
[3] Tech Univ Dresden, Dresden Ctr Computat Mat Sci DCMS, D-01062 Dresden, Germany
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2023年 / 138卷 / 11期
关键词
ENERGY-LEVELS; CRYSTAL-FIELD; STIMULATED-EMISSION; SPECTROSCOPIC PROPERTIES; ABSORPTION-SPECTRA; NEUTRON-SCATTERING; LASER PERFORMANCE; SINGLE-CRYSTALS; MAGNETOCRYSTALLINE ANISOTROPY; INFRARED-ABSORPTION;
D O I
10.1140/epjp/s13360-023-04449-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Intermultiplet (spin-orbit) transitions in lanthanides, observed by means of high-energy inelastic neutron scattering are well-suited for the determination of exchange field Hex in permanent-magnet materials. The situation is particularly favorable in Nd-based magnets, where Hexis given by mu BHex=(143)/(296)(Einter-Delta(so)),E-inter being the observed transition energy and Delta sothespin-orbit splitting between the bary centers of the two lowest-lying multiplets. The latter can be regarded as a known atomic constant,Delta(so)=232 +/- 1 meV. A more accurate value of Delta sois obtainable by way of relativistic density-functional calculations, however, it proves material-dependent. Thus,Delta(so)=231.4meVforNd(2)Fe(14)B. Two obstacles in the way of the direct determination ofHexareJ-mixing and crystal electric field. In order to allow for theJ-mixing, approximate formulas are proposed that enable a definitivesolution of the problem. By contrast, crystal-field corrections have to be treated on a case-by-case basis
引用
收藏
页数:17
相关论文
共 50 条
  • [21] CALCULATION OF MAGNETIZATION CURVES OF PERMANENT-MAGNET MATERIALS
    CHRISTOPH, V
    MULLER, KH
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1991, 101 (1-3) : 323 - 327
  • [22] Permanent-magnet materials: Research directions and opportunities
    Richman, RH
    McNaughton, WP
    JOURNAL OF ELECTRONIC MATERIALS, 1997, 26 (05) : 415 - 422
  • [23] RAPIDLY QUENCHED METALS FOR PERMANENT-MAGNET MATERIALS
    BECKER, JJ
    JOURNAL OF APPLIED PHYSICS, 1984, 55 (06) : 2067 - 2072
  • [24] Permanent-magnet materials: Research directions and opportunities
    R. H. Richman
    W. P. McNaughton
    Journal of Electronic Materials, 1997, 26 : 415 - 422
  • [25] PERMANENT-MAGNET STRUCTURES FOR THE PRODUCTION OF TRANSVERSE HELICAL FIELDS
    MORCOS, ABC
    POTENZIANI, E
    LEUPOLD, HA
    IEEE TRANSACTIONS ON MAGNETICS, 1986, 22 (05) : 1066 - 1068
  • [26] Efficient Utilization of Rare Earth Permanent-Magnet Materials and Torque Ripple Reduction in Interior Permanent-Magnet Machines
    Du, Zhentao S.
    Lipo, Thomas A.
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2017, 53 (04) : 3485 - 3495
  • [27] A METHOD OF TESTING PERMANENT-MAGNET BLANKS (EXCHANGE OF EXPERIENCE)
    BOIKO, EK
    INDUSTRIAL LABORATORY, 1993, 59 (04): : 420 - 421
  • [28] Semihard Iron-Based Permanent-Magnet Materials
    Yin, Li
    Juneja, Rinkle
    Lindsay, Lucas
    Pandey, Tribhuwan
    Parker, David S.
    PHYSICAL REVIEW APPLIED, 2021, 15 (02)
  • [29] ND-FE-B PERMANENT-MAGNET MATERIALS
    SAGAWA, M
    HIROSAWA, S
    YAMAMOTO, H
    FUJIMURA, S
    MATSUURA, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1987, 26 (06): : 785 - 800
  • [30] First-principle studies of permanent-magnet materials
    Jaswal, SS
    Sabiryanov, RF
    ADVANCED HARD AND SOFT MAGNETIC MATERIALS, 1999, 577 : 109 - 119