Underrepresentation of activating KIR gene expression in single-cell RNA-seq data is due to KIR gene misassignment

被引:0
|
作者
Alves, Eric [1 ,2 ]
Chopra, Abha [3 ]
Ram, Ramesh [3 ]
Currenti, Jennifer [2 ,4 ]
Kalams, Spyros A. [5 ]
Mallal, Simon A. [3 ,5 ]
Phillips, Elizabeth J. [3 ,5 ]
Gaudieri, Silvana [1 ,3 ,5 ,6 ]
机构
[1] Univ Western Australia, Sch Human Sci, Crawley, WA, Australia
[2] QEII Med Ctr, Harry Perkins Inst Med Res, Nedlands, WA, Australia
[3] Murdoch Univ, Inst Immunol & Infect Dis, Murdoch, WA, Australia
[4] Curtin Univ, Sch Med, Bentley, WA, Australia
[5] Vanderbilt Univ, Med Ctr, Dept Med, Nashville, TN USA
[6] Univ Western Australia, Sch Human Sci, Perth, WA 6009, Australia
基金
美国国家卫生研究院; 英国医学研究理事会;
关键词
HLA;
D O I
10.1002/eji.202350590
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Standard single-cell RNA-sequencing alignment pipelines exhibit a propensity for misassigning killer immunoglobulin-like receptor (KIR) transcripts, thereby giving rise to inaccuracies in quantifying KIR expression. Alves et al. elucidated that these default workflows frequently misclassify activating KIR transcripts as inhibitory KIR expression, resulting in a skewed representation of the KIR repertoire.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Bayesian inference of gene expression states from single-cell RNA-seq data
    Breda, Jeremie
    Zavolan, Mihaela
    van Nimwegen, Erik
    NATURE BIOTECHNOLOGY, 2021, 39 (08) : 1008 - +
  • [2] Bayesian inference of gene expression states from single-cell RNA-seq data
    Jérémie Breda
    Mihaela Zavolan
    Erik van Nimwegen
    Nature Biotechnology, 2021, 39 : 1008 - 1016
  • [3] Optimal Gene Filtering for Single-Cell data (OGFSC)-a gene filtering algorithm for single-cell RNA-seq data
    Hao, Jie
    Cao, Wei
    Huang, Jian
    Zou, Xin
    Han, Ze-Guang
    BIOINFORMATICS, 2019, 35 (15) : 2602 - 2609
  • [4] scINRB: single-cell gene expression imputation with network regularization and bulk RNA-seq data
    Kang, Yue
    Zhang, Hongyu
    Guan, Jinting
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [5] A probabilistic gene expression barcode for annotation of cell types from single-cell RNA-seq data
    Grabski, Isabella N.
    Irizarry, Rafael A.
    BIOSTATISTICS, 2022, 23 (04) : 1150 - 1164
  • [6] scENT for Revealing Gene Clusters From Single-Cell RNA-Seq Data
    Rao, Fan
    Chen, Minghan
    Yang, Defu
    Morrell, Bess
    Song, Qianqian
    Zhu, Wentao
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (03) : 2266 - 2277
  • [7] Comparison of Gene Selection Methods for Clustering Single-cell RNA-seq Data
    Zhu, Xiaoshu
    Wang, Jianxin
    Li, Rongruan
    Peng, Xiaoqing
    CURRENT BIOINFORMATICS, 2023, 18 (01) : 1 - 11
  • [8] FastCount: A Fast Gene Count Software for Single-cell RNA-seq Data
    Liu, Jinpeng
    Liu, Xinan
    Yu, Ye
    Wang, Chi
    Liu, Jinze
    12TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS (ACM-BCB 2021), 2021,
  • [9] Identifying gene expression programs in single-cell RNA-seq data using linear correlation explanation
    Nussbaum, Yulia I.
    Hossain, K. S. M. Tozammel
    Kaifi, Jussuf
    Warren, Wesley C.
    Shyu, Chi-Ren
    Mitchem, Jonathan B.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2024, 154
  • [10] Detection of high variability in gene expression from single-cell RNA-seq profiling
    Hung-I Harry Chen
    Yufang Jin
    Yufei Huang
    Yidong Chen
    BMC Genomics, 17