Matrix Weighted Kolmogorov-Riesz's Compactness Theorem

被引:1
作者
Liu, Shenyu [1 ]
Yang, Dongyong [1 ]
Zhuo, Ciqiang [2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Peoples R China
来源
FRONTIERS OF MATHEMATICS | 2023年 / 18卷 / 05期
基金
中国国家自然科学基金;
关键词
Kolmogorov-Riesz theorem; matrix weight; totally bounded; metric measure space; variable exponent Lebesgue space; A(P) WEIGHTS; SPACES; SETS;
D O I
10.1007/s11464-021-0103-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, several versions of the Kolmogorov-Riesz compactness theorem in weighted Lebesgue spaces with matrix weights are obtained. In particular, when the matrix weight W is in the known Ap class, a characterization of totally bounded subsets in Lp(W) with p is an element of (1, infinity) is established.
引用
收藏
页码:1167 / 1189
页数:23
相关论文
共 39 条
[31]   Convex body domination and weighted estimates with matrix weights [J].
Nazarov, Fedor ;
Petermichl, Stefanie ;
Treil, Sergei ;
Volberg, Alexander .
ADVANCES IN MATHEMATICS, 2017, 318 :279-306
[32]  
Riesz M., 1933, ACTA SCI MATH SZEGED, V6, P136
[33]   Matrix-weighted Besov spaces [J].
Roudenko, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (01) :273-314
[34]   Wavelets and the angle between past and future [J].
Treil, S ;
Volberg, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 143 (02) :269-308
[35]  
Tsuji M., 1952, Kodai Math. Sem. Rep, V3, P33
[36]   Matrix A(p) weights via S-functions [J].
Volberg, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 10 (02) :445-466
[37]  
Willard S., 2004, GeneralTopology
[38]   CHARACTERIZATIONS OF WEIGHTED COMPACTNESS OF COMMUTATORS VIA CMO(Rn) [J].
Wu, Huoxiong ;
Yang, Dongyong .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (10) :4239-4254
[39]   Weighted Frechet-Kolmogorov Theorem and Compactness of Vector-Valued Multilinear Operators [J].
Xue, Qingying ;
Yabuta, Kozo ;
Yan, Jingquan .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (10) :9891-9914