Matrix Weighted Kolmogorov-Riesz's Compactness Theorem

被引:0
作者
Liu, Shenyu [1 ]
Yang, Dongyong [1 ]
Zhuo, Ciqiang [2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Peoples R China
来源
FRONTIERS OF MATHEMATICS | 2023年 / 18卷 / 05期
基金
中国国家自然科学基金;
关键词
Kolmogorov-Riesz theorem; matrix weight; totally bounded; metric measure space; variable exponent Lebesgue space; A(P) WEIGHTS; SPACES; SETS;
D O I
10.1007/s11464-021-0103-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, several versions of the Kolmogorov-Riesz compactness theorem in weighted Lebesgue spaces with matrix weights are obtained. In particular, when the matrix weight W is in the known Ap class, a characterization of totally bounded subsets in Lp(W) with p is an element of (1, infinity) is established.
引用
收藏
页码:1167 / 1189
页数:23
相关论文
共 39 条
[21]   Matrix Ap weights via maximal functions [J].
Goldberg, M .
PACIFIC JOURNAL OF MATHEMATICS, 2003, 211 (02) :201-220
[22]   From Arzela-Ascoli to Riesz-Kolmogorov [J].
Gorka, Przemyslaw ;
Rafeiro, Humberto .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 144 :23-31
[23]   Almost everything you need to know about relatively compact sets in variable Lebesgue spaces [J].
Gorka, Przemyslaw ;
Macios, Anna .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (07) :1925-1949
[24]   ON RELATIVELY COMPACT SETS IN QUASI-BANACH FUNCTION SPACES [J].
Guo, Weichao ;
Zhao, Guoping .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (08) :3359-3373
[25]   The Kolmogorov-Riesz compactness theorem [J].
Hanche-Olsen, Harald ;
Holden, Helge .
EXPOSITIONES MATHEMATICAE, 2010, 28 (04) :385-394
[26]   The Sharp Square Function Estimate with Matrix Weight [J].
Hytonen, Tuomas ;
Petermichl, Stefanie ;
Volberg, Alexander .
DISCRETE ANALYSIS, 2019,
[27]   A FRAMEWORK FOR NON-HOMOGENEOUS ANALYSIS ON METRIC SPACES, AND THE RBMO SPACE OF TOLSA [J].
Hytonen, Tuomas .
PUBLICACIONS MATEMATIQUES, 2010, 54 (02) :485-504
[28]   Sharp Matrix Weighted Strong Type Inequalities for the Dyadic Square Function [J].
Isralowitz, Joshua .
POTENTIAL ANALYSIS, 2020, 53 (04) :1529-1540
[29]  
Kolmogorov AN, 1931, Nachr. Ges. Wiss. Gttingen, V9, P60
[30]  
Nazarov F., 1996, Algebra Anal., V8, P32