Dependent tasks offloading in mobile edge computing: A multi-objective evolutionary optimization strategy

被引:27
作者
Gong, Yanqi [1 ,2 ]
Bian, Kun
Hao, Fei [1 ,2 ]
Sun, Yifei [3 ]
Wu, Yulei [4 ]
机构
[1] Minist Educ, Key Lab Modern Teaching Technol, Xian 710062, Peoples R China
[2] Shaanxi Normal Univ, Sch Comp Sci, Xian 710119, Peoples R China
[3] Shaanxi Normal Univ, Sch Phys & Informat Technol, Xian 710119, Peoples R China
[4] Univ Exeter, Fac Environm Sci & Econ, Dept Comp Sci, Exeter EX4 4QF, England
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2023年 / 148卷
基金
中国国家自然科学基金;
关键词
Dependent task offloading; Mobile edge computing; Multi-objective optimization; Evolutionary computation; Cloud-edge-end collaborative computing; ALLOCATION; INTERNET; AUCTION; MOEA/D; IOT;
D O I
10.1016/j.future.2023.06.015
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Due to the proliferation of applications such as virtual reality and online games with high real-time requirements, Mobile Edge Computing (MEC) has become a promising computing paradigm that can improve user experience and reduce the task offloading latency. The cloud-edge-end collaborative offloading further addresses the problem of insufficient computing resources of edge servers owing to large-scale computing-intensive applications in MEC. However, existing offloading solutions often ignore the important factor of economic cost, making it hard for these solutions to achieve a sustainable cloud-edge-end collaborative computation. To this end, this paper considers a multi-user multi-server, cloud-edge-end collaborative offloading scenario in the presence of dependent offloading tasks for the sake of maximizing rewards and minimizing latency. Each user issues a computing-intensive application consisting of multiple dependent tasks, which are offloaded collaboratively by various computational resources. With the goal of maximizing the yield of offloading for users and server providers, a multi-objective optimization problem of joint task offloading and execution rewards is studied. Technically, a multivariate multi-objective optimization problem with three objectives is modeled. An efficient multi-objective evolutionary optimization algorithm based on MOEA/D is then developed to solve the latency minimization and reward maximization problems. Extensive simulation results verify the effectiveness of the algorithm and illustrate that the proposed algorithm can significantly improve user offloading benefits. In addition, a scalability evaluations of our proposed algorithm is conducted for demonstrating its feasibility in large-scale task offloading scenarios.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:314 / 325
页数:12
相关论文
共 50 条
[1]  
[Anonymous], 2015, White Paper
[2]   A Balls-and-Bins Model of Trade [J].
Armenter, Roc ;
Koren, Miklos .
AMERICAN ECONOMIC REVIEW, 2014, 104 (07) :2127-2151
[3]   An efficient ascending-bid auction for multiple objects [J].
Ausubel, LM .
AMERICAN ECONOMIC REVIEW, 2004, 94 (05) :1452-1475
[4]  
Avasalcai C., 2020, Fog Computing: Theory and Practice, P43
[5]  
Cao Y, 2015, PROCEEDINGS OF THE 2015 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, ARCHITECTURE AND STORAGE (NAS), P2, DOI 10.1109/NAS.2015.7255196
[6]   A DRL Agent for Jointly Optimizing Computation Offloading and Resource Allocation in MEC [J].
Chen, Juan ;
Xing, Huanlai ;
Xiao, Zhiwen ;
Xu, Lexi ;
Tao, Tao .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (24) :17508-17524
[7]   Task Offloading for Mobile Edge Computing in Software Defined Ultra-Dense Network [J].
Chen, Min ;
Hao, Yixue .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2018, 36 (03) :587-597
[8]   Socially-Motivated Cooperative Mobile Edge Computing [J].
Chen, Xu ;
Zhou, Zhi ;
Wu, Weigang ;
Wu, Di ;
Zhang, Junshan .
IEEE NETWORK, 2018, 32 (06) :177-183
[9]   EXPLOITING MASSIVE D2D COLLABORATION FOR ENERGY-EFFICIENT MOBILE EDGE COMPUTING [J].
Chen, Xu ;
Pu, Lingjun ;
Gao, Lin ;
Wu, Weigang ;
Wu, Di .
IEEE WIRELESS COMMUNICATIONS, 2017, 24 (04) :64-71
[10]   First Hop Mobile Offloading of DAG Computations [J].
De Maio, Vincenzo ;
Brandic, Ivona .
2018 18TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2018, :83-92