Coupling effect of critical properties shift and capillary pressure on confined fluids: A simulation study in tight reservoirs

被引:5
作者
Ma, Yuhua [1 ]
Kang, Zhihong [1 ]
Lei, Xin [1 ]
Chen, Xiaodong [2 ]
Gou, Congbo [2 ,3 ]
Kang, Zhijiang [4 ]
Wang, Shuoliang [1 ,5 ]
机构
[1] China Univ Geosci, Sch Energy Resources, Beijing 100083, Peoples R China
[2] PetroChina, Res Inst Explorat & Dev Changqing Oilfield, Xian 710000, Shaanxi, Peoples R China
[3] Nation Engn Lab Explorat & Dev Low Permeabil Oil &, Xian 710000, Shaanxi, Peoples R China
[4] Sinopec Petr Explorat & Dev Res Inst, Beijing 100083, Peoples R China
[5] China Univ Geosci, Petr Engn, Wuhan, Peoples R China
关键词
Compositional numerical simulation; Confined effect; Phase behavior; Critical properties shift; Capillary pressure; PHASE-BEHAVIOR; NANOPORE CONFINEMENT; SURFACE-TENSION; CARBON-DIOXIDE; CRITICAL-POINT; CONDENSATION; ADSORPTION; MISCIBILITY; ALGORITHM; EQUATION;
D O I
10.1016/j.heliyon.2023.e15675
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Critical properties shift and large capillary pressure are important contributors for the phase behavior altering of nanopore fluid. However, the effects of critical properties shift and large capillary pressure on the phase behavior are ignored in traditional compositional simulators, leading to inaccurate evaluation results of tight reservoirs. In this study, phase behavior and production of confined fluid in nanopores are studied. First, we developed a method for coupling the effect of critical properties shift and capillary pressure into the vapor-liquid equilibrium calculation base on Peng-Robinson equation of state. Second, a novel fully compositional numerical simulation algorithm considering effect of critical properties shift and capillary pressure on phase behavior is accomplished. Third, we have discussed the alterations of critical properties shift effect, capillary pressure effect and coupling effect on the composition of oil and gas production in detail. The critical properties shift and capillary pressure effects on oil and gas production in tight reservoirs are analyzed quantitatively through four cases, and the influences of the two effects in oil/gas production are compared. Based on the fully compositional numerical simulation, the simulator can rigorously simulate the impacts of component changes during production. The simulation results show that both the critical properties shift effect and the capillary pressure effect reduce the bubble point pressure of Changqing shale oil, and the influence are more prevalent in pores of smaller radius. In pores is larger than 50 nm, the phase behavior altering of the fluid can be ignored. In addition, we devised four cases to comprehensively investigate the effects of critical properties shift and large capillary pressure on production performance of tight reservoirs. The comparisons between the four cases show that the capillary pressure effect impacts the reservoir production performances greater than the critical properties shift effect, such as higher oil production, higher GOR, and lower content of lighter component and higher content of heavier component in the residual oil/gas. The results of coupling effects indicate that the critical properties shift effect would suppress the effect of the capillary pressure effect. In particular, the difference between the simulation results of the coupling effects and the base case is smaller than that between the simulation results of the capillary pressure effect and the base case.
引用
收藏
页数:20
相关论文
共 55 条
  • [1] Alharthy N. S, 2013, SPE ANN TECHNICAL C
  • [2] Condensation in Nanoporous Packed Beds
    Ally, Javed
    Molla, Shahnawaz
    Mostowfi, Farshid
    [J]. LANGMUIR, 2016, 32 (18) : 4494 - 4499
  • [3] Arogundade O., 2012, REV RECENT DEV CHALL, DOI DOI 10.2118/160869-MS
  • [4] Brusilovsky A., 1992, SPE RESERVOIR ENG, V7, P117, DOI [DOI 10.2118/20180-PA, 10.2118/20180-PA]
  • [5] Effect of surface interactions on the hysteresis of capillary condensation in nanopores
    Casanova, F.
    Chiang, C. E.
    Li, C. -P.
    Roshchin, I. V.
    Ruminski, A. M.
    Sailor, M. J.
    Schuller, I. K.
    [J]. EPL, 2008, 81 (02)
  • [6] A pore-network-based upscaling framework for the nanoconfined phase behavior in shale rocks
    Chen, Sidian
    Jiang, Jiamin
    Guo, Bo
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 417
  • [7] Hydrocarbon Behavior at Nanoscale Interfaces
    Cole, David R.
    Ok, Salim
    Striolo, Alberto
    Anh Phan
    [J]. CARBON IN EARTH, 2013, 75 : 495 - 545
  • [8] Du L., 2012, SPE CANADIAN UNCONVE, DOI DOI 10.2118/161830-MS
  • [9] FLUIDS IN NARROW PORES - ADSORPTION, CAPILLARY CONDENSATION, AND CRITICAL-POINTS
    EVANS, R
    MARCONI, UMB
    TARAZONA, P
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (04) : 2376 - 2399
  • [10] Firincioglu T., 2013, PROC SPE ANN TECHNIC, DOI DOI 10.2118/166459-MS