Normalized Ground States and Multiple Solutions for Nonautonomous Fractional Schrodinger Equations

被引:2
作者
Yang, Chen [1 ]
Yu, Shu-Bin [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Schrodinger equation; Ground states; Multiple normalized solutions; EXISTENCE; NLS;
D O I
10.1007/s12346-023-00827-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following fractional Schr & ouml;dinger equations with prescribed L-2-norm constraint:{(-?)(s)u = ?u + h(ex) f (u) in R-N,?R-N |u|(2)dx = a(2),where 0 < s < 1, N = 3, a, e > 0, h ? C(R-N, R+) and f ? C(R, R). In the mass subcritical case but under general assumptions on f, we prove the multiplicity of normalized solutions to this problem. Specifically, we show that the number of normalized solutions is at least the number of global maximum points of h when e is small enough. Before that, without any restrictions on e and the number of global maximum points, the existence of normalized ground states can be determined. In this sense, by studying the relationship between h(0) := inf(x?R)(N) h(x) and h(8) := lim(|x|?8)h(x), we establish new results on the existence of normalized ground states for nonautonomous elliptic equations.
引用
收藏
页数:24
相关论文
共 33 条
  • [1] Alves CO, 2022, Z ANGEW MATH PHYS, V73, DOI 10.1007/s00033-022-01741-9
  • [2] Alves CO, 2022, CALC VAR PARTIAL DIF, V61, DOI 10.1007/s00526-021-02123-1
  • [3] Applebaum D., 2004, NOT AM MATH SOC, V51, P1336
  • [4] Normalized solutions for the fractional NLS with mass supercritical nonlinearity
    Appolloni, Luigi
    Secchi, Simone
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 286 : 248 - 283
  • [5] Normalized ground states of the nonlinear Schrodinger equation with at least mass critical growth
    Bieganowski, Bartosz
    Mederski, Jaroslaw
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (11)
  • [6] Blowup for fractional NLS
    Boulenger, Thomas
    Himmelsbach, Dominik
    Lenzmann, Enno
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) : 2569 - 2603
  • [7] A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS
    BREZIS, H
    LIEB, E
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) : 486 - 490
  • [8] Bucur C, 2016, LECT NOTES UNIONE MA, V20, P1, DOI 10.1007/978-3-319-28739-3
  • [9] Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates
    Cabre, Xavier
    Sire, Yannick
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01): : 23 - 53
  • [10] Multiplicity of positive and nodal solutions for nonlinear elliptic problems in R(N)
    Cao, DM
    Noussair, ES
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (05): : 567 - 588