Morphometric frequency and spectrum of gamma-ray-induced chlorophyll mutants identified by phenotype and development of novel variants in lentil (Lens culinaris Medik.)

被引:3
作者
Pramanik, Biswajit [1 ]
Debnath, Sandip [1 ]
Rahimi, Mehdi [2 ]
Helal, Md. Mostofa Uddin [3 ]
Hasan, Rakibul [4 ]
机构
[1] Visva Bharati Univ, Inst Agr, Palli Siksha Bhavana, Dept Genet & Plant Breeding, Sriniketan, W Bengal, India
[2] Grad Univ Adv Technol, Inst Sci & High Technol & Environm Sci, Dept Biotechnol, Kerman, Iran
[3] Shanxi Agr Univ, Inst Wheat Res, State Key Lab Sustainable Dryland Agr, Linfen, Peoples R China
[4] Sylhet Agr Univ, Dept Plant Pathol & Seed Sci, Sylhet, Bangladesh
来源
PLOS ONE | 2023年 / 18卷 / 06期
关键词
RADIATION;
D O I
10.1371/journal.pone.0286975
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genetic variations are a crucial source of germplasm heterogeneity, as they contribute to the development of new traits for plant breeding by offering an allele resource. Gamma rays have been widely used as a physical agent to produce mutations in plants, and their mutagenic effect has attracted much attention. Nonetheless, few studies have examined the whole mutation spectrum in large-scale phenotypic evaluations. To comprehensively investigate the mutagenic effects of gamma irradiation on lentils, biological consequences on the M-1 generation and substantial phenotypic screening on the M-2 generation were undertaken. Additionally, the study followed the selected mutants into the M-3 generation to evaluate the agronomic traits of interest for crop improvement. Seeds of lentil variety Moitree were irradiated with a range of acute gamma irradiation doses (0, 100, 150, 200, 250, 300, and 350 Gy) to induce unique genetic variability. This research focused on determining the GR(50) value while considering seedling parameters and examining the status of pollen fertility while comparing the effects of the gamma irradiation dosages. The GR(50) value was determined to be 217.2 Gy using the seedling parameters. Pollens from untreated seed-grown plants were approximately 85% fertile, but those treated with the maximum dosage (350 Gy) were approximately 28% fertile. Numerous chlorophyll and morphological mutants were produced in the M-2 generation, with the 300 Gy -treated seeds being the most abundant, followed by the 250 Gy -treated seeds. This demonstrated that an appropriate dosage of gamma rays was advantageous when seeking to generate elite germplasm resources for one or multiple traits. Selected mutants in the M-3 generation showed improved agronomic traits, including plant height, root length, number of pods per plant, and yield per plant. These investigations will contribute to a comprehensive understanding of the mutagenic effects and actions of gamma rays, providing a basis for the selection and design of suitable mutagens. This will facilitate the development of more controlled mutagenesis protocols for plant breeding and help guide future research directions for crop improvement using radiation-induced mutation breeding techniques.
引用
收藏
页数:15
相关论文
共 49 条
  • [21] Finney D.J, 1971, PROBIT ANAL CAMBRID
  • [22] Gaur A.K., 2018, INT J CHEM, V6, P1975
  • [23] Mutagenesis: Generation and Evaluation of Induced Mutations
    Jambhulkar, Sanjay J.
    [J]. ADVANCES IN BOTANICAL RESEARCH: INCORPORATING ADVANCES IN PLANT PATHOLOGY, VOL 45, 2007, 45 : 417 - 434
  • [24] Jayashree V., 2020, Electronic Journal of Plant Breeding, V11, P271, DOI 10.37992/2020.1101.046
  • [25] Genetic improvement for yield through induced mutagenesis in groundnut (Arachis hypogaea L.)
    Kavera
    Nadaf, H. L.
    [J]. LEGUME RESEARCH, 2017, 40 (01) : 32 - 35
  • [26] Khursheed Shahnawaz, 2020, International Journal of Botany Studies, V5, P50
  • [27] Kumar V., 2020, J APPL NAT SCI, V12, P641
  • [28] Kumar V., 2018, BARC NEWSLETTER, V366, P5
  • [29] Kumari V. Visha, 2020, Journal of AgriSearch, V7, P202, DOI 10.21921/jas.v7i04.19390
  • [30] Laskar RA, 2019, ADVANCES IN PLANT BREEDING STRATEGIES: LEGUMES, VOL 7, P319, DOI 10.1007/978-3-030-23400-3_9