Highly Efficient and Selective Visible-light Photocatalytic CO2 Reduction to CO Using a 2D Co(II)-Imidazole MOF as Cocatalyst and Ru(bpy)3Cl2 as Photosensitizer

被引:4
|
作者
Wang, Lin [1 ]
Zhang, Hongyan [1 ]
Zhang, Zhoujie [1 ]
Zhang, Jiajia [1 ]
He, Yuhan [1 ]
Li, Qi [1 ]
Bao, Jianchun [2 ]
Fang, Min [1 ,3 ]
Wu, Yong [1 ]
机构
[1] Nanjing Normal Univ, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Sch Chem & Mat Sci, Jiangsu Key Lab New Power Batteries, Nanjing 210023, Peoples R China
[2] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab Biofunct Mat, Nanjing 210023, Peoples R China
[3] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Coordinat Chem, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
photocatalytic CO2 reduction; CO; mechanism; imidazole MOF; cobalt; METAL-ORGANIC FRAMEWORKS; ZEOLITIC IMIDAZOLATE FRAMEWORK; ELECTRON-TRANSFER; PHOTOREDOX CATALYSIS; REDOX POTENTIALS; TRANSITION-METAL; CARBON-DIOXIDE; EXCITED-STATE; CONVERSION; ZIF-67;
D O I
10.1002/asia.202300297
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The first application of an imidazole MOF, the 2D Co(II)- imidazole framework, {[Co(TIB)(2)(H2O)(4)]SO4} (TIB stands for 1,3,5-tris(1-imidazolyl) benzene) (CoTIB) in photocatalytic CO2 reduction was carried out, and compared with that of ZIF-67. The CO2/CoTIB (1.0 mg)/Ru(bpy)(3)Cl-2 (bpy=2,2'-bipyridine) (11.3 mg)/CH3CN (40 mL)/TEOA (10 mL)/H2O (400 & mu;L) system produced 76.9 & mu;mol of CO in 9 h, corresponding to the efficiency of 9.4 mmol g(-1) h(-1) (TOF: 7.3 h(-1)) with a >99% selectivity. Its catalytic activity is even higher than that of ZIF-67 based on TOF values. However, CoTIB is non-porous and has a very poor CO2 adsorption capacity and poor conductivity. Extensive photocatalytic experiments and energy-level diagrams suggest that the reduction did not depend on the CO2 adsorption by the cocatalyst, but can occur by the direct electron transfer from conduction-band maximum (CBM) of the cocatalyst to the zwitterionic alkylcarbonate adduct formed by the reaction of TEOA and CO2. In addition, the process utilizes the short-lived singlet state ((MLCT)-M-1), not the long-lived triplet state ((MLCT)-M-3) of Ru(bpy)(3)Cl-2 to transfer electrons to the CBM of CoTIB. We found that the high efficiency of a cocatalyst, a photosensitizer, or a photocatalytic system depends on the matching of all related energy levels of the photosensitizer, the cocatalyst, CO2, and the sacrificial agent in the reaction system.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Highly Selective Photocatalytic Reduction of CO2 to CO Over Ru-Modified Bi2MoO6
    Ren, Guangmin
    Liu, Sitong
    Li, Zizhen
    Bai, Hongcun
    Hu, Xiude
    Meng, Xiangchao
    SOLAR RRL, 2022, 6 (07)
  • [42] SELECTIVE FORMATION OF HCOO- IN THE ELECTROCHEMICAL CO2 REDUCTION CATALYZED BY [RU(BPY)2(CO)2]2+ (BPY = 2,2'-BIPYRIDINE)
    ISHIDA, H
    TANAKA, H
    TANAKA, K
    TANAKA, T
    JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1987, (02) : 131 - 132
  • [43] Efficient photocatalytic CO2 reduction by visible-light responsive Fe-doped WO3 nanostructures
    Merajin, Maryam Torabi
    Nasiri, Mohammad
    Abedini, Ebrahim
    Sharifnia, Shahram
    INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, 2020, 27 (02) : 126 - 134
  • [44] Highly Efficient and Selective Photocatalytic CO2 Reduction to CO in Water by a Cobalt Porphyrin Molecular Catalyst
    Call, Arnau
    Cibian, Mihaela
    Yamamoto, Keiya
    Nakazono, Takashi
    Yamauchi, Kosei
    Sakai, Ken
    ACS CATALYSIS, 2019, 9 (06): : 4867 - 4874
  • [45] EFFICIENT PHOTOCHEMICAL REDUCTION OF CO2 TO CO BY VISIBLE-LIGHT IRRADIATION OF SYSTEMS CONTAINING RE(BIPY)(CO)3X OR RU(BIPY)32+-CO2+ COMBINATIONS AS HOMOGENEOUS CATALYSTS
    HAWECKER, J
    LEHN, JM
    ZIESSEL, R
    JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1983, (09) : 536 - 538
  • [46] Report Highly efficient and highly selective CO2 reduction to CO driven by laser
    Yan, Bo
    Li, Yinwu
    Cao, Weiwei
    Zeng, Zhiping
    Liu, Pu
    Ke, Zhuofeng
    Yang, Guowei
    JOULE, 2022, 6 (12) : 2735 - 2744
  • [47] Highly efficient and stable Ag/AgIO3 particles for photocatalytic reduction of CO2 under visible light
    He, Z. Q.
    Wang, D.
    Fang, H. Y.
    Chen, J. M.
    Song, S.
    NANOSCALE, 2014, 6 (18) : 10540 - 10544
  • [48] Highly Efficient and Selective Visible-Light Driven CO2-to-CO Conversion by a Co(II) Homogeneous Catalyst in H2O/CH3CN Solution
    Liu, Dong-Cheng
    Huang, Hai-Hua
    Wang, Jia-Wei
    Jiang, Long
    Zhong, Di-Chang
    Lu, Tong-Bu
    CHEMCATCHEM, 2018, 10 (16) : 3435 - 3440
  • [49] CO2 REDUCTION IN VISIBLE-LIGHT IN THE PRESENCE OF TICL3 ON ZEOLITE
    SHISHKINA, EA
    KOLOMNIKOV, IS
    LYSIAK, TV
    RUDNEV, AV
    KALIAZIN, EP
    KHARITONOV, IJ
    DOKLADY AKADEMII NAUK SSSR, 1984, 277 (03): : 650 - 651
  • [50] Enhanced selective photocatalytic CO2 reduction into CO over Ag/CdS nanocomposites under visible light
    Zhu, Zezhou
    Qin, Jiani
    Jiang, Min
    Ding, Zhengxin
    Hou, Yidong
    APPLIED SURFACE SCIENCE, 2017, 391 : 572 - 579