共 50 条
Highly Efficient and Selective Visible-light Photocatalytic CO2 Reduction to CO Using a 2D Co(II)-Imidazole MOF as Cocatalyst and Ru(bpy)3Cl2 as Photosensitizer
被引:4
|作者:
Wang, Lin
[1
]
Zhang, Hongyan
[1
]
Zhang, Zhoujie
[1
]
Zhang, Jiajia
[1
]
He, Yuhan
[1
]
Li, Qi
[1
]
Bao, Jianchun
[2
]
Fang, Min
[1
,3
]
Wu, Yong
[1
]
机构:
[1] Nanjing Normal Univ, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Sch Chem & Mat Sci, Jiangsu Key Lab New Power Batteries, Nanjing 210023, Peoples R China
[2] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab Biofunct Mat, Nanjing 210023, Peoples R China
[3] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Coordinat Chem, Nanjing 210023, Peoples R China
基金:
中国国家自然科学基金;
关键词:
photocatalytic CO2 reduction;
CO;
mechanism;
imidazole MOF;
cobalt;
METAL-ORGANIC FRAMEWORKS;
ZEOLITIC IMIDAZOLATE FRAMEWORK;
ELECTRON-TRANSFER;
PHOTOREDOX CATALYSIS;
REDOX POTENTIALS;
TRANSITION-METAL;
CARBON-DIOXIDE;
EXCITED-STATE;
CONVERSION;
ZIF-67;
D O I:
10.1002/asia.202300297
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
The first application of an imidazole MOF, the 2D Co(II)- imidazole framework, {[Co(TIB)(2)(H2O)(4)]SO4} (TIB stands for 1,3,5-tris(1-imidazolyl) benzene) (CoTIB) in photocatalytic CO2 reduction was carried out, and compared with that of ZIF-67. The CO2/CoTIB (1.0 mg)/Ru(bpy)(3)Cl-2 (bpy=2,2'-bipyridine) (11.3 mg)/CH3CN (40 mL)/TEOA (10 mL)/H2O (400 & mu;L) system produced 76.9 & mu;mol of CO in 9 h, corresponding to the efficiency of 9.4 mmol g(-1) h(-1) (TOF: 7.3 h(-1)) with a >99% selectivity. Its catalytic activity is even higher than that of ZIF-67 based on TOF values. However, CoTIB is non-porous and has a very poor CO2 adsorption capacity and poor conductivity. Extensive photocatalytic experiments and energy-level diagrams suggest that the reduction did not depend on the CO2 adsorption by the cocatalyst, but can occur by the direct electron transfer from conduction-band maximum (CBM) of the cocatalyst to the zwitterionic alkylcarbonate adduct formed by the reaction of TEOA and CO2. In addition, the process utilizes the short-lived singlet state ((MLCT)-M-1), not the long-lived triplet state ((MLCT)-M-3) of Ru(bpy)(3)Cl-2 to transfer electrons to the CBM of CoTIB. We found that the high efficiency of a cocatalyst, a photosensitizer, or a photocatalytic system depends on the matching of all related energy levels of the photosensitizer, the cocatalyst, CO2, and the sacrificial agent in the reaction system.
引用
收藏
页数:12
相关论文