Solving the explainable AI conundrum by bridging clinicians' needs and developers' goals

被引:43
作者
Bienefeld, Nadine [1 ]
Boss, Jens Michael [2 ,3 ,4 ]
Luthy, Rahel [5 ]
Brodbeck, Dominique [5 ]
Azzati, Jan [5 ]
Blaser, Mirco [5 ]
Willms, Jan [2 ,3 ,4 ]
Keller, Emanuela [2 ,3 ,4 ]
机构
[1] Swiss Fed Inst Technol, Dept Management Technol & Econ, Zurich, Switzerland
[2] Univ Hosp Zurich, Clin Neurosci Ctr, Dept Neurosurg, Neurocrit Care Unit, Zurich, Switzerland
[3] Univ Hosp Zurich, Inst Intens Care Med, Clin Neurosci Ctr, Zurich, Switzerland
[4] Univ Zurich, Zurich, Switzerland
[5] Inst Med Engn & Med Informat, Sch Life Sci FHNW, Muttenz, Switzerland
基金
瑞士国家科学基金会;
关键词
INFORMATION;
D O I
10.1038/s41746-023-00837-4
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Explainable artificial intelligence (XAI) has emerged as a promising solution for addressing the implementation challenges of AI/ML in healthcare. However, little is known about how developers and clinicians interpret XAI and what conflicting goals and requirements they may have. This paper presents the findings of a longitudinal multi-method study involving 112 developers and clinicians co-designing an XAI solution for a clinical decision support system. Our study identifies three key differences between developer and clinician mental models of XAI, including opposing goals (model interpretability vs. clinical plausibility), different sources of truth (data vs. patient), and the role of exploring new vs. exploiting old knowledge. Based on our findings, we propose design solutions that can help address the XAI conundrum in healthcare, including the use of causal inference models, personalized explanations, and ambidexterity between exploration and exploitation mindsets. Our study highlights the importance of considering the perspectives of both developers and clinicians in the design of XAI systems and provides practical recommendations for improving the effectiveness and usability of XAI in healthcare.
引用
收藏
页数:7
相关论文
共 38 条
[1]  
Alsuradi Haneen, 2020, HCI International 2020 - Late Breaking Papers. Multimodality and Intelligence. 22nd HCI International Conference, HCII 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12424), P406, DOI 10.1007/978-3-030-60117-1_30
[2]   To explain or not to explain?-Artificial intelligence explainability in clinical decision support systems [J].
Amann, Julia ;
Vetter, Dennis ;
Blomberg, Stig Nikolaj ;
Christensen, Helle Collatz ;
Coffee, Megan ;
Gerke, Sara ;
Gilbert, Thomas K. ;
Hagendorff, Thilo ;
Holm, Sune ;
Livne, Michelle ;
Spezzatti, Andy ;
Strumke, Inga ;
Zicari, Roberto, V ;
Madai, Vince Istvan .
PLOS DIGITAL HEALTH, 2022, 1 (02)
[3]  
[Anonymous], ONE PLATFORM CONNECT
[4]  
Bartolome A., 2022, npj Digit. Med, V5, P1
[5]   ICU Cockpit: a platform for collecting multimodal waveform data, AI-based computational disease modeling and real-time decision support in the intensive care unit [J].
Boss, Jens Michael ;
Narula, Gagan ;
Straessle, Christian ;
Willms, Jan ;
Azzati, Jan ;
Brodbeck, Dominique ;
Luethy, Rahel ;
Suter, Susanne ;
Buehler, Christof ;
Muroi, Carl ;
Mack, David Jule ;
Seric, Marko ;
Baumann, Daniel ;
Keller, Emanuela .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2022, 29 (07) :1286-1291
[6]   VBridge: Connecting the Dots Between Features and Data to Explain Healthcare Models [J].
Cheng, Furui ;
Liu, Dongyu ;
Du, Fan ;
Lin, Yanna ;
Zytek, Alexandra ;
Li, Haomin ;
Qu, Huamin ;
Veeramachaneni, Kalyan .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (01) :378-388
[7]   Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare [J].
Cirillo, Davide ;
Catuara-Solarz, Silvina ;
Morey, Czuee ;
Guney, Emre ;
Subirats, Laia ;
Mellino, Simona ;
Gigante, Annalisa ;
Valencia, Alfonso ;
Rementeria, Maria Jose ;
Chadha, Antonella Santuccione ;
Mavridis, Nikolaos .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[8]   Stable learning establishes some common ground between causal inference and machine learning [J].
Cui, Peng ;
Athey, Susan .
NATURE MACHINE INTELLIGENCE, 2022, 4 (02) :110-115
[9]   Machine intelligence in healthcare-perspectives on trustworthiness, explainability, usability, and transparency [J].
Cutillo, Christine M. ;
Sharma, Karlie R. ;
Foschini, Luca ;
Kundu, Shinjini ;
Mackintosh, Maxine ;
Mandl, Kenneth D. ;
Beck, Tyler ;
Collier, Elaine ;
Colvis, Christine ;
Gersing, Kenneth ;
Gordon, Valery ;
Jensen, Roxanne ;
Shabestari, Behrouz ;
Southall, Noel .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[10]  
Field A., 2009, DISCOVERING STAT USI