Delay-Sensitive Energy-Efficient UAV Crowdsensing by Deep Reinforcement Learning

被引:57
作者
Dai, Zipeng [1 ]
Liu, Chi Harold [1 ]
Han, Rui [1 ]
Wang, Guoren [1 ]
Leung, Kin K. K. [2 ]
Tang, Jian [3 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[2] Imperial Coll, Elect & Elect Engn Dept, London SW7 2BT, England
[3] Midea Grp, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
Sensors; Task analysis; Crowdsensing; Data collection; Navigation; Delays; Computational modeling; UAV crowdsensing; delay-sensitive applications; energy-efficiency; deep reinforcement learning; TRAJECTORY DESIGN; TASK ASSIGNMENT; DATA-COLLECTION; NAVIGATION;
D O I
10.1109/TMC.2021.3113052
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile crowdsensing (MCS) by unmanned aerial vehicles (UAVs) servicing delay-sensitive applications becomes popular by navigating a group of UAVs to take advantage of their equipped high-precision sensors and durability for data collection in harsh environments. In this paper, we aim to simultaneously maximize collected data amount, geographical fairness, and minimize the energy consumption of all UAVs, as well as to guarantee the data freshness by setting a deadline in each timeslot. Specifically, we propose a centralized control, distributed execution framework by decentralized deep reinforcement learning (DRL) for delay-sensitive and energy-efficient UAV crowdsensing, called "DRL-eFresh". It includes a synchronous computational architecture with GRU sequential modeling to generate multi-UAV navigation decisions. Also, we derive an optimal time allocation solution for data collection while considering all UAV efforts and avoiding much data dropout due to limited data upload time and wireless data rate. Simulation results show that DRL-eFresh significantly improves the energy efficiency, as compared to the best baseline DPPO, by 14% and 22% on average when varying different sensing ranges and number of PoIs, respectively.
引用
收藏
页码:2038 / 2052
页数:15
相关论文
共 53 条
[1]  
3GPP, 2017, 5G STUD SCEN REQ NEX
[2]   Millimeter Wave Channel Modeling and Cellular Capacity Evaluation [J].
Akdeniz, Mustafa Riza ;
Liu, Yuanpeng ;
Samimi, Mathew K. ;
Sun, Shu ;
Rangan, Sundeep ;
Rappaport, Theodore S. ;
Erkip, Elza .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1164-1179
[3]   Modeling and Analyzing Millimeter Wave Cellular Systems [J].
Andrews, Jeffrey G. ;
Bai, Tianyang ;
Kulkarni, Mandar N. ;
Alkhateeb, Ahmed ;
Gupta, Abhishek K. ;
Heath, Robert W., Jr. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2017, 65 (01) :403-430
[4]  
[Anonymous], 1984, DEC Research Report TR-301
[5]  
Ba JL, 2016, Layer normalization
[6]   Dual-UAV-Enabled Secure Communications: Joint Trajectory Design and User Scheduling [J].
Cai, Yunlong ;
Cui, Fangyu ;
Shi, Qingjiang ;
Zhao, Minjian ;
Li, Geoffrey Ye .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2018, 36 (09) :1972-1985
[7]   The rise of people-centric sensing [J].
Campbell, Andrew T. ;
Lane, Nicholas D. ;
Miluzzo, Emiliano ;
Peterson, Ronald A. ;
Lu, Hong ;
Zheng, Xiao ;
Musolesi, Mirco ;
Fodor, Kristof ;
Ahn, Gahng-Seop ;
Eisenman, Shane B. .
IEEE INTERNET COMPUTING, 2008, 12 (04) :12-21
[8]  
Cappiello AG, 2019, 2019 INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS (ISSCS 2019), DOI [10.1109/COMST.2019.2914030, 10.1109/isscs.2019.8801767]
[9]   Delay-Sensitive Mobile Crowdsensing: Algorithm Design and Economics [J].
Cheung, Man Hon ;
Hou, Fen ;
Huang, Jianwei .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2018, 17 (12) :2761-2774
[10]  
Cho K., 2014, C EMP METH NAT LANG, DOI [10.48550/arXiv.1406.1078, DOI 10.48550/ARXIV.1406.1078]