The Activity and Stability of Promoted Cu/ZnO/Al2O3 Catalyst for CO2 Hydrogenation to Methanol

被引:1
|
作者
Berahim, Nor Hafizah [1 ,2 ]
Zabidi, Noor Asmawati Mohd [2 ]
Ramli, Raihan Mahirah [3 ]
Suhaimi, Nur Amirah [2 ]
机构
[1] PETRONAS Res Sdn Bhd, Grp Res & Technol, Carbon Capture Utilizat & Storage Dept, Kajang 43000, Selangor, Malaysia
[2] Univ Teknol PETRONAS, Inst Contaminant Management Oil & Gas, Ctr Contaminant Control & Utilizat CenCoU, Dept Fundamental & Appl Sci, Seri Iskandar 32610, Perak, Malaysia
[3] Univ Teknol PETRONAS, Ctr Innovat Nanostruct & Nanodevices COINN, Dept Chem Engn, Seri Iskandar 32610, Perak, Malaysia
关键词
Cu; ZnO; Al2O3; catalyst; methanol synthesis; stability; activity; SULFUR TOLERANCE; CARBON-DIOXIDE; DEACTIVATION; ADSORPTION; INTERFACE; SURFACE; SYNGAS; SITES; SIZE; XPS;
D O I
10.3390/pr11030719
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Cu/ZnO/Al2O3 catalyst with the addition of tri-promoters (Mn/Nb/Zr) was investigated with respect to their catalytic activity and stability in a prolonged reaction duration in methanol synthesis. Spent catalysts were characterized using N-2 adsorption-desorption, FESEM/EDX, TEM, N2O chemisorption, and XPS for their physicochemical properties. The catalyst longevity study was evaluated at two days, seven days, and 14 days at 300 degrees C, 31.25 bar, 2160 mL/g.hr GHSV, and H-2:CO2 at 10:1. The CO2 conversion and methanol yield decreased by about 5.7% and 7.7%, respectively, when the reaction duration was prolonged to 14 days. A slight reduction in catalytic activity under prolonged reaction duration was found due to thermal degradation.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Influence of Cu/Al Ratio on the Performance of Carbon-Supported Cu/ZnO/Al2O3 Catalysts for CO2 Hydrogenation to Methanol
    Xie, Zhong
    Hei, Jinpei
    Cheng, Lei
    Li, Jing
    Yin, Xiaojie
    Meng, Sugang
    CATALYSTS, 2023, 13 (05)
  • [12] CO2 Hydrogenation to Methanol over La2O3-Promoted CuO/ZnO/Al2O3 Catalysts: A Kinetic and Mechanistic Study
    Kourtelesis, Marios
    Kousi, Kalliopi
    Kondarides, Dimitris, I
    CATALYSTS, 2020, 10 (02)
  • [13] The role of Al doping in Pd/ZnO catalyst for CO2 hydrogenation to methanol
    Song, Jimin
    Liu, Sihang
    Yang, Chengsheng
    Wang, Guishuo
    Tian, Hao
    Zhao, Zhi-jian
    Mu, Rentao
    Gong, Jinlong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 263
  • [14] Modulation of Al2O3 and ZrO2 composite in Cu/ZnO-based catalysts with enhanced performance for CO2 hydrogenation to methanol
    Wang, Jianwen
    Song, Yihui
    Li, Jing
    Liu, Fengdong
    Wang, Jiajing
    Lv, Jing
    Wang, Shiwei
    Li, Maoshuai
    Bao, Xiaojun
    Ma, Xinbin
    APPLIED CATALYSIS A-GENERAL, 2024, 674
  • [15] Effect of hydrothermal environment on Cu-ZnO/Al2O3 catalyst for hydrogenation of CO2 to methanol
    Li, Jin
    Guo, Qing
    Zhao, Xu
    Hu, Yongke
    Zhang, Shizhong
    Zhao, Yu
    Li, Shaozhong
    MOLECULAR CATALYSIS, 2023, 549
  • [16] Modifications in the Composition of CuO/ZnO/Al2O3 Catalyst for the Synthesis of Methanol by CO2 Hydrogenation
    Trifan, Bianca
    Lasobras, Javier
    Soler, Jaime
    Herguido, Javier
    Menendez, Miguel
    CATALYSTS, 2021, 11 (07)
  • [17] Development of an Efficient Methanol Production Process for Direct CO2 Hydrogenation over a Cu/ZnO/Al2O3 Catalyst
    Samimi, Fereshteh
    Rahimpour, Mohammad Reza
    Shariati, Ali
    CATALYSTS, 2017, 7 (11)
  • [18] Cu/g-C3N4 modified ZnO/Al2O3 catalyst: methanol yield improvement of CO2 hydrogenation
    Deng, Kaixi
    Hu, Bing
    Lu, Qingye
    Hong, Xinlin
    CATALYSIS COMMUNICATIONS, 2017, 100 : 81 - 84
  • [19] A highly active Cu/ZnO/Al2O3 nanofiber catalyst for methanol synthesis through CO2 and CO hydrogenation
    An, X
    Ren, F
    Li, JL
    Wang, JF
    CHINESE JOURNAL OF CATALYSIS, 2005, 26 (09) : 729 - 730
  • [20] Residual sodium effect on the catalytic activity of Cu/ZnO/Al2O3 in methanol synthesis from CO2 hydrogenation
    Jun, KW
    Shen, WJ
    Rao, KSR
    Lee, KW
    APPLIED CATALYSIS A-GENERAL, 1998, 174 (1-2) : 231 - 238