The frequency and intensity of rockburst in underground engineering have increased with excavation depth. In order to predict rockburst intensity grade, this paper introduces six machine learning algorithms to establish six rockburst prediction models. Based on 289-day microseismic monitoring data and rockburst events of Qinling water conveyance tunnel, the rockburst intensity grade prediction dataset is constructed. In the process of model establishment, the impact of data imbalance on model performance is discussed first, and it is concluded that Borderline-SMOTE1 is the most effective method to eliminate data imbalance. Secondly, the analysis of six models' performance indicators shows that the rockburst prediction model based on the Adaboost algorithm has the best performance, with the highest accuracy, macro-F-1, and micro-F-1, which are 0.938, 0.937, and 0.938, respectively. Finally, the Borderline-SMOTE1-Adaboost model was applied to the prediction of the rockburst intensity grade of Qinling water conveyance tunnel from June 1, 2020 to June 10, 2020. All ten strong rockbursts are accurately predicted, which verifies the effectiveness of predicting rockburst intensity grade through microseismic parameters. The results show that the Borderline-SMOTE1-Adaboost rockburst prediction model can provide a reference for the early warning of rockburst disasters during the construction of deep-buried tunnels.