Current and future implications of artificial intelligence in colonoscopy

被引:13
作者
Antonelli, Giulio [1 ,2 ]
Rizkala, Tommy [3 ]
Iacopini, Federico [1 ]
Hassan, Cesare [3 ,4 ]
机构
[1] Osped Castelli Hosp, Gastroenterol & Digest Endoscopy Unit, Rome, Italy
[2] Sapienza Univ Rome, Dept Anat Histol Forens Med & Orthoped Sci, Rome, Italy
[3] Humanitas Univ, Dept Biomed Sci, Rozzano, Italy
[4] IRCCS Humanitas Res Hosp, Milan, Italy
来源
ANNALS OF GASTROENTEROLOGY | 2023年
关键词
Artificial intelligence; machine learning; colonoscopy; adenoma detection rate; polyp detection; COMPUTER-AIDED DETECTION; DETECTION-ASSISTED COLONOSCOPY; CLASSIFICATION; SOCIETY; SYSTEM; COLLABORATION; POLYPECTOMY; DISCARD; RESECT;
D O I
10.20524/aog.2023.0781
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Gastrointestinal endoscopy has proved to be a perfect context for the development of artificial intelligence (AI) systems that can aid endoscopists in many tasks of their daily activities. Lesion detection (computer-aided detection, CADe) and lesion characterization (computer-aided characterization, CADx) during colonoscopy are the clinical applications of AI in gastroenterology for which by far the most evidence has been published. Indeed, they are the only applications for which more than one system has been developed by different companies, is currently available on the market, and may be used in clinical practice. Both CADe and CADx, alongside hopes and hypes, come with potential drawbacks, limitations and dangers that must be known, studied and researched as much as the optimal uses of these machines, aiming to stay one step ahead of the possible misuse of what will always be an aid to the clinician and never a substitute. An AI revolution in colonoscopy is on the way, but the potential uses are infinite and only a fraction of them have currently been studied. Future applications can be designed to ensure all aspects of colonoscopy quality parameters and truly deliver a standardization of practice, regardless of the setting in which the procedure is performed. In this review, we cover the available clinical evidence on AI applications in colonoscopy and offer an overview of future directions.
引用
收藏
页码:114 / 122
页数:9
相关论文
共 55 条
[1]   Human-machine collaboration: bringing artificial intelligence into colonoscopy [J].
Ahmad, Omer F. ;
Stoyanov, Danail ;
Lovat, Laurence B. .
FRONTLINE GASTROENTEROLOGY, 2019, 10 (02) :198-199
[2]   Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study [J].
Areia, Miguel ;
Mori, Yuichi ;
Correale, Loredana ;
Repici, Alessandro ;
Bretthauer, Michael ;
Sharma, Prateek ;
Taveira, Filipe ;
Spadaccini, Marco ;
Antonelli, Giulio ;
Ebigbo, Alanna ;
Kudo, Shin-Ei ;
Arribas, Julia ;
Barua, Ishita ;
Kaminski, Michal F. ;
Messmann, Helmut ;
Rex, Douglas K. ;
Dinis-Ribeiro, Mario ;
Hassan, Cesare .
LANCET DIGITAL HEALTH, 2022, 4 (06) :E436-E444
[3]  
Barua I, 2022, REAL TIME ARTIFICIAL, P1
[4]   Artificial intelligence for polyp detection during colonoscopy: a systematic review and meta-analysis [J].
Barua, Ishita ;
Vinsard, Daniela Guerrero ;
Jodal, Henriette C. ;
Loberg, Magnus ;
Kalager, Mette ;
Holme, Oyvind ;
Misawa, Masashi ;
Bretthauer, Michael ;
Mori, Yuichi .
ENDOSCOPY, 2021, 53 (03) :277-284
[5]   Status of implementation and organization of cancer screening in The European Union Member StatesSummary results from the second European screening report [J].
Basu, Partha ;
Ponti, Antonio ;
Anttila, Ahti ;
Ronco, Guglielmo ;
Senore, Carlo ;
Vale, Diama Bhadra ;
Segnan, Nereo ;
Tomatis, Mariano ;
Soerjomataram, Isabelle ;
Zakelj, Maja Primic ;
Dillner, Joakim ;
Elfstrom, Klara Miriam ;
Lonnberg, Stefan ;
Sankaranarayanan, Rengaswamy .
INTERNATIONAL JOURNAL OF CANCER, 2018, 142 (01) :44-56
[6]   Deep Learning Computer-aided Polyp Detection Reduces Adenoma Miss Rate: A United States Multi-center Randomized Tandem Colonoscopy Study (CADeT-CS Trial) [J].
Brown, Jeremy R. Glissen ;
Mansour, Nabil M. ;
Wang, Pu ;
Chuchuca, Maria Aguilera ;
Minchenberg, Scott B. ;
Chandnani, Madhuri ;
Liu, Lin ;
Gross, Seth A. ;
Sengupta, Neil ;
Berzin, Tyler M. .
CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2022, 20 (07) :1499-+
[7]   Development and validation of a deep learning-based algorithm for colonoscopy quality assessment [J].
Chang, Yuan-Yen ;
Li, Pai-Chi ;
Chang, Ruey-Feng ;
Chang, Yu-Yao ;
Huang, Siou-Ping ;
Chen, Yang-Yuan ;
Chang, Wen-Yen ;
Yen, Hsu-Heng .
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2022, 36 (09) :6446-6455
[8]   Curriculum for optical diagnosis training in Europe: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement [J].
Dekker, Evelien ;
Houwen, Britt B. S. L. ;
Puig, Ignasi ;
Bustamante-Balen, Marco ;
Coron, Emmanuel ;
Dobru, Daniela E. ;
Kuvaev, Roman ;
Neumann, Helmut ;
Johnson, Gavin ;
Pimentel-Nunes, Pedro ;
Sanders, David S. ;
Dinis-Ribeiro, Mario ;
Arvanitakis, Marianna ;
Ponchon, Thierry ;
East, James E. ;
Bisschops, Raf .
ENDOSCOPY, 2020, 52 (10) :899-923
[9]   Colorectal polypectomy and endoscopic mucosal resection (EMR): European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline [J].
Ferlitsch, Monika ;
Moss, Alan ;
Hassan, Cesare ;
Bhandari, Pradeep ;
Dumonceau, Jean-Marc ;
Paspatis, Gregorios ;
Jover, Rodrigo ;
Langner, Cord ;
Bronzwaer, Maxime ;
Nalankilli, Kumanan ;
Fockens, Paul ;
Hazzan, Rawi ;
Gralnek, Ian M. ;
Gschwantler, Michael ;
Waldmann, Elisabeth ;
Jeschek, Philip ;
Penz, Daniela ;
Heresbach, Denis ;
Moons, Leon ;
Lemmers, Arnaud ;
Paraskeva, Konstantina ;
Pohl, Juergen ;
Ponchon, Thierry ;
Regula, Jaroslaw ;
Repici, Alessandro ;
Rutter, Matthew D. ;
Burgess, Nicholas G. ;
Bourke, Michael J. .
ENDOSCOPY, 2017, 49 (03) :270-297
[10]   Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study [J].
Gong, Dexin ;
Wu, Lianlian ;
Zhang, Jun ;
Mu, Ganggang ;
Shen, Lei ;
Liu, Jun ;
Wang, Zhengqiang ;
Zhou, Wei ;
An, Ping ;
Huang, Xu ;
Jiang, Xiaoda ;
Li, Yanxia ;
Wan, Xinyue ;
Hu, Shan ;
Chen, Yiyun ;
Hu, Xiao ;
Xu, Youming ;
Zhu, Xiaoyun ;
Li, Suqin ;
Yao, Liwen ;
He, Xinqi ;
Chen, Di ;
Huang, Li ;
Wei, Xiao ;
Wang, Xuemei ;
Yu, Honggang .
LANCET GASTROENTEROLOGY & HEPATOLOGY, 2020, 5 (04) :352-361