Lasing by Template-Assisted Self-Assembled Quantum Dots

被引:13
作者
Aftenieva, Olha [1 ]
Sudzius, Markas [2 ]
Prudnikau, Anatol [3 ]
Adnan, Mohammad [1 ,4 ]
Sarkar, Swagato [1 ]
Lesnyak, Vladimir [3 ]
Leo, Karl [2 ,5 ]
Fery, Andreas [1 ,5 ,6 ]
Koenig, Tobias A. F. [1 ,5 ]
机构
[1] Leibniz Inst Polymer Res Dresden eV, Hohe Str 6, D-01169 Dresden, Germany
[2] Tech Univ Dresden, Dresden Integrated Ctr Appl Phys & Photon Mat IAPP, D-01069 Dresden, Germany
[3] Tech Univ Dresden, Inst Phys Chem, Zellescher Weg 19, D-01069 Dresden, Germany
[4] Westfalische Wilhelms Univ Munster, Phys Inst, Wilhelm Klemm Str 10, D-48149 Munster, Germany
[5] Tech Univ Dresden, Ctr Adv Elect Dresden Cfaed, D-01062 Dresden, Germany
[6] Tech Univ Dresden, Chair Phys Chem Polymer Mat, Mommsenstr 4, D-01062 Dresden, Germany
关键词
confinement self-assembly; distributed feedback laser; quantum dots; soft lithography; LASERS; NANOCRYSTALS; FILMS; BEAM; GAIN;
D O I
10.1002/adom.202202226
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Miniaturized laser sources with low threshold power are required for integrated photonic devices. Photostable core/shell nanocrystals are well suited as gain material and their laser properties can be exploited by direct patterning as distributed feedback (DFB) lasers. Here, the 2nd-order DFB resonators tuned to the photoluminescence wavelength of the QDs are used. Soft lithography based on template-assisted colloidal self-assembly enables pattern resolution in the subwavelength range. Combined with the directional Langmuir-Blodgett arrangement, control of the waveguide layer thickness is further achieved. It is shown that a lasing threshold of 5.5 mJ cm(-)(2) is reached by a direct printing method, which can be further reduced by a factor of ten (0.6 mJ cm(-)(2)) at an optimal waveguide thickness. Moreover, it is discussed how one can adjust the DFB geometries to any working wavelength. This colloidal approach offers prospects for applications in bioimaging, biomedical sensing, anti-counterfeiting, or displays.
引用
收藏
页数:9
相关论文
共 84 条
  • [1] Microsecond-sustained lasing from colloidal quantum dot solids
    Adachi, Michael M.
    Fan, Fengjia
    Sellan, Daniel P.
    Hoogland, Sjoerd
    Voznyy, Oleksandr
    Houtepen, Arjan J.
    Parrish, Kevin D.
    Kanjanaboos, Pongsakorn
    Malen, Jonathan A.
    Sargent, Edward H.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [2] Electrophoretically-Deposited CdSe Quantum Dot Films for Electrochromic Displays and Smart Windows
    Aniskevich, Yauhen
    Radchanka, Aliaksandra
    Antanovich, Artsiom
    Prudnikau, Anatol
    Quick, Michael T.
    Achtstein, Alexander W.
    Jo, Jae Hyeon
    Ragoisha, Genady
    Artemyev, Mikhail
    Streltsov, Eugene
    [J]. ACS APPLIED NANO MATERIALS, 2021, 4 (07) : 6974 - 6984
  • [3] [Anonymous], NANOPHOTONIC FDTD SI
  • [4] Metal-halide perovskite-based edge emitting lasers
    Basak, Supratim
    Bar-On, Ofer
    Scheuer, Jacob
    [J]. OPTICAL MATERIALS EXPRESS, 2022, 12 (02) : 375 - 382
  • [5] Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone
    Chang, Hojun
    Min, Kyungtaek
    Lee, Myungjae
    Kang, Minsu
    Park, Yeonsang
    Cho, Kyung-Sang
    Roh, Young-Geun
    Hwang, Sung Woo
    Jeon, Heonsu
    [J]. NANOSCALE, 2016, 8 (12) : 6571 - 6576
  • [6] Nanophotonic devices and circuits based on colloidal quantum dots
    Chen, Jianjun
    Rong, Kexiu
    [J]. MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (12) : 4502 - 4537
  • [7] Recent advances in solid-state organic lasers
    Chenais, Sebastien
    Forget, Sebastien
    [J]. POLYMER INTERNATIONAL, 2012, 61 (03) : 390 - 406
  • [8] High-Performance Plasmonic Nanolasers with a Nanotrench Defect Cavity for Sensing Applications
    Cheng, Pi-Ju
    Huang, Zhen-Ting
    Li, Jhu-Hong
    Chou, Bo-Tsun
    Chou, Yu-Hsun
    Lo, Wei-Cheng
    Chen, Kuo-Ping
    Lu, Tien-Chang
    Lin, Tzy-Rong
    [J]. ACS PHOTONICS, 2018, 5 (07): : 2638 - 2644
  • [9] Semiconductor nanolasers and the size-energy-efficiency challenge: a review
    Ning, Cun-Zheng
    [J]. ADVANCED PHOTONICS, 2019, 1 (01):
  • [10] Dang C, 2012, NAT NANOTECHNOL, V7, P335, DOI [10.1038/NNANO.2012.61, 10.1038/nnano.2012.61]