3D printed microfluidics for bioanalysis: A review of recent advancements and applications

被引:28
作者
Griffin, Kitiara [1 ]
Pappas, Dimitri [1 ]
机构
[1] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA
基金
美国国家科学基金会;
关键词
DEVICE; CELLS; SEPARATION; CAPTURE; FLOW;
D O I
10.1016/j.trac.2022.116892
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Three-dimensional (3D) printing is an emerging technique that is gaining popularity in the field of microfluidics for bioanalytical applications. 3D printing offers a better alternative to expand fabrication methods that overcomes the limitations of traditional microfluidics in terms of time, affordability, durability, reusability, mass production, and ease of fabrication. Depending on the needs of the micro -fluidic device, the 3D printed chip can be customized based on the fabrication methods, design, and materials used. In this review, we evaluate the recent bioanalytical uses of 3D printed microfluidics with respect to their methodologies and customization. We foresee 3D printing revolutionizing microfluidic fabrication and becoming the primary method in the coming years with its rapid technological growth and advancements.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 56 条
[1]  
Alapan Yunus, 2015, J Nanotechnol Eng Med, V6, DOI 10.1115/1.4031231
[2]   3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection [J].
Arshavsky-Graham, Sofia ;
Enders, Anton ;
Ackerman, Shanny ;
Bahnemann, Janina ;
Segal, Ester .
MICROCHIMICA ACTA, 2021, 188 (03)
[3]   3D-Printed Microfluidics [J].
Au, Anthony K. ;
Huynh, Wilson ;
Horowitz, Lisa F. ;
Folch, Albert .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :3862-3881
[4]   3D printing: Principles and pharmaceutical applications of selective laser sintering [J].
Awad, Atheer ;
Fina, Fabrizio ;
Goyanes, Alvaro ;
Gaisford, Simon ;
Basit, Abdul W. .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2020, 586
[5]   Fused deposition modeling of thermoplastic elastomeric materials: Challenges and opportunities [J].
Awasthi, Pratiksha ;
Banerjee, Shib Shankar .
ADDITIVE MANUFACTURING, 2021, 46
[6]   Additive manufacturing of multi-material structures [J].
Bandyopadhyay, Amit ;
Heer, Bryan .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2018, 129 :1-16
[7]   3D Printing of Inertial Microfluidic Devices [J].
Bazaz, Sajad Razavi ;
Rouhi, Omid ;
Raoufi, Mohammad Amin ;
Ejeian, Fatemeh ;
Asadnia, Mohsen ;
Jin, Dayong ;
Warkiani, Majid Ebrahimi .
SCIENTIFIC REPORTS, 2020, 10 (01)
[8]   3D-printed microfluidic device for the synthesis of silver and gold nanoparticles [J].
Bressan, Lucas P. ;
Robles-Najar, Jessica ;
Adamo, Cristina B. ;
Quero, Reverson F. ;
Costa, Brenda M. C. ;
de Jesus, Dosil P. ;
da Silva, Jose A. F. .
MICROCHEMICAL JOURNAL, 2019, 146 :1083-1089
[9]   Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices [J].
Carrell, Cody S. ;
McCord, Cynthia P. ;
Wydallis, Rachel M. ;
Henry, Charles S. .
ANALYTICA CHIMICA ACTA, 2020, 1124 :78-84
[10]   PolyJet 3D-Printed Enclosed Microfluidic Channels without Photocurable Supports [J].
Castiaux, Andre D. ;
Pinger, Cody W. ;
Hayter, Elizabeth A. ;
Bunn, Marcus E. ;
Martin, R. Scott ;
Spence, Dana M. .
ANALYTICAL CHEMISTRY, 2019, 91 (10) :6910-6917