Toward stabilization of formamidinium lead iodide perovskites by defect control and composition engineering

被引:40
作者
Liang, Yuhang [1 ,2 ]
Li, Feng [2 ]
Cui, Xiangyuan [3 ]
Lv, Taoyuze [2 ]
Stampfl, Catherine [2 ]
Ringer, Simon P. [3 ]
Yang, Xudong [4 ,5 ,6 ]
Huang, Jun [1 ]
Zheng, Rongkun [2 ]
机构
[1] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[2] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[3] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[4] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[5] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Ctr Hydrogen Sci, Shanghai 200240, Peoples R China
[6] Shanghai Jiao Tong Univ, Zhangjiang Inst Adv Study, Shanghai 201210, Peoples R China
基金
澳大利亚研究理事会;
关键词
SOLAR-CELLS; PHASE; PERFORMANCE; 1ST-PRINCIPLES; TEMPERATURE; EFFICIENCY; CATIONS;
D O I
10.1038/s41467-024-46044-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Phase instability poses a serious challenge to the commercialization of formamidinium lead iodide (FAPbI3)-based solar cells and optoelectronic devices. Here, we combine density functional theory and machine learning molecular dynamics simulations, to investigate the mechanism driving the undesired alpha-delta phase transition of FAPbI3. Prevalent iodine vacancies and interstitials can significantly expedite the structural transition kinetics by inducing robust covalency during transition states. Extrinsically, the detrimental roles of atmospheric moisture and oxygen in degrading the FAPbI3 perovskite phase are also rationalized. Significantly, we discover the compositional design principles by categorizing that A-site engineering primarily governs thermodynamics, whereas B-site doping can effectively manipulate the kinetics of the phase transition in FAPbI3, highlighting lanthanide ions as promising B-site substitutes. A-B mixed doping emerges as an efficient strategy to synergistically stabilize alpha-FAPbI3, as experimentally demonstrated by substantially higher initial optoelectronic characteristics and significantly enhanced phase stability in Cs-Eu doped FAPbI3 as compared to its Cs-doped counterpart. This study provides scientific guidance for the design and optimization of long-term stable FAPbI3-based solar cells and other optoelectronic devices through defect control and synergetic composition engineering. The black phase formamidinium lead iodide perovskite (alpha-FAPbI3) undergoes an undesired transformation to a non-perovskite delta-phase, rendering it inactive. Here authors show the significant role of inherent iodine defects in accelerating phase transition kinetics and exacerbating alpha-FAPbI3 instability.
引用
收藏
页数:12
相关论文
共 75 条
[1]   Strong Covalency-Induced Recombination Centers in Perovskite Solar Cell Material CH3NH3Pbl3 [J].
Agiorgousis, Michael L. ;
Sun, Yi-Yang ;
Zeng, Hao ;
Zhang, Shengbai .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (41) :14570-14575
[2]   A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure α-FAPbI3 [J].
Ahlawat, Paramvir ;
Hinderhofer, Alexander ;
Alharbi, Essa A. ;
Lu, Haizhou ;
Ummadisingu, Amita ;
Niu, Haiyang ;
Invernizzi, Michele ;
Zakeeruddin, Shaik Mohammed ;
Dar, M. Ibrahim ;
Schreiber, Frank ;
Hagfeldt, Anders ;
Graetzel, Michael ;
Rothlisberger, Ursula ;
Parrinello, Michele .
SCIENCE ADVANCES, 2021, 7 (17)
[3]   Recent progress in tin-based perovskite solar cells [J].
Cao, Jiupeng ;
Yan, Feng .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (03) :1286-1325
[4]   Eppur si Muove: Proton Diffusion in Halide Perovskite Single Crystals [J].
Ceratti, Davide Raffaele ;
Zohar, Arava ;
Kozlov, Roman ;
Dong, Hao ;
Uraltsev, Gennady ;
Girshevitz, Olga ;
Pinkas, Iddo ;
Avram, Liat ;
Hodes, Gary ;
Cahen, David .
ADVANCED MATERIALS, 2020, 32 (46)
[5]   Kinetic pathway of y-to-6 phase transition in CsPbI3 [J].
Chen, Gao-Yuan ;
Guo, Zhen-Dong ;
Gong, Xin-Gao ;
Yin, Wan-Jian .
CHEM, 2022, 8 (11) :3120-3129
[6]   Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite [J].
Chen, Tianran ;
Foley, Benjamin J. ;
Park, Changwon ;
Brown, Craig M. ;
Harriger, Leland W. ;
Lee, Jooseop ;
Ruff, Jacob ;
Yoon, Mina ;
Choi, Joshua J. ;
Lee, Seung-Hun .
SCIENCE ADVANCES, 2016, 2 (10)
[7]   Strain engineering and epitaxial stabilization of halide perovskites [J].
Chen, Yimu ;
Lei, Yusheng ;
Li, Yuheng ;
Yu, Yugang ;
Cai, Jinze ;
Chiu, Ming-Hui ;
Rao, Rahul ;
Gu, Yue ;
Wang, Chunfeng ;
Choi, Woojin ;
Hu, Hongjie ;
Wang, Chonghe ;
Li, Yang ;
Song, Jiawei ;
Zhang, Jingxin ;
Qi, Baiyan ;
Lin, Muyang ;
Zhang, Zhuorui ;
Islam, Ahmad E. ;
Maruyama, Benji ;
Dayeh, Shadi ;
Li, Lain-Jong ;
Yang, Kesong ;
Lo, Yu-Hwa ;
Xu, Sheng .
NATURE, 2020, 577 (7789) :209-+
[8]   Soft Lattice and Defect Covalency Rationalize Tolerance of β-CsPbI3 Perovskite Solar Cells to Native Defects [J].
Chu, Weibin ;
Saidi, Wissam A. ;
Zhao, Jin ;
Prezhdo, Oleg, V .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (16) :6435-6441
[9]   Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites [J].
Dobrovolsky, Alexander ;
Merdasa, Aboma ;
Unger, Eva L. ;
Yartsev, Arkady ;
Scheblykin, Ivan G. .
NATURE COMMUNICATIONS, 2017, 8
[10]   Lanthanide Ions Doped CsPbBr3 Halides for HTM-Free 10.14%-Efficiency Inorganic Perovskite Solar Cell with an Ultrahigh Open-Circuit Voltage of 1.594 V [J].
Duan, Jialong ;
Zhao, Yuanyuan ;
Yang, Xiya ;
Wang, Yudi ;
He, Benlin ;
Tang, Qunwei .
ADVANCED ENERGY MATERIALS, 2018, 8 (31)