Density of the Level Sets of the Metric Mean Dimension for Homeomorphisms

被引:2
作者
Acevedo, Jeovanny M. [1 ]
Romana, Sergio [2 ,3 ]
Arias, Raibel [4 ]
机构
[1] Univ Tecnol Bolivar, Fac Ciencias Basicas, Cartagena De Indias, Colombia
[2] Univ Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio De Janeiro, Brazil
[3] Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China
[4] Univ Fed Maranhao, Campus Balsas, Sao Luis, Brazil
关键词
Mean dimension; Metric mean dimension; Topological entropy; Genericity;
D O I
10.1007/s10884-023-10344-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let N be an n-dimensional compact riemannian manifold, with n >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}. In this paper, we prove that for any alpha is an element of[0,n]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [0,n]$$\end{document}, the set consisting of homeomorphisms on N with lower and upper metric mean dimensions equal to alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is dense in Hom(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Hom}(N)$$\end{document}. More generally, given alpha,beta is an element of[0,n]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta \in [0,n]$$\end{document}, with alpha <=beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \le \beta $$\end{document}, we show the set consisting of homeomorphisms on N with lower metric mean dimension equal to alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and upper metric mean dimension equal to beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is dense in Hom(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Hom}(N)$$\end{document}. Furthermore, we also give a proof that the set of homeomorphisms with upper metric mean dimension equal to n is residual in Hom(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Hom}(N)$$\end{document}.
引用
收藏
页码:1965 / 1978
页数:14
相关论文
共 15 条
[1]  
Acevedo J.M., 2024, Metric mean dimension and mean Hausdorff dimension varying the metric
[2]  
Acevedo JM., 2024, Rev. Colomb. de Math, V57, P57
[3]   ON PERIODIC POINTS [J].
ARTIN, M ;
MAZUR, B .
ANNALS OF MATHEMATICS, 1965, 81 (01) :82-&
[4]   Generic homeomorphisms have full metric mean dimension [J].
Carvalho, Maria ;
Rodrigues, Fagner B. ;
Varandas, Paulo .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (01) :40-64
[5]   Embedding minimal dynamical systems into Hilbert cubes [J].
Gutman, Yonatan ;
Tsukamoto, Masaki .
INVENTIONES MATHEMATICAE, 2020, 221 (01) :113-166
[6]   On proofs of the C-0 general density theorem [J].
Hurley, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (04) :1305-1309
[7]   Mean topological dimension [J].
Lindenstrauss, E ;
Weiss, B .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 115 (1) :1-24
[8]   Double variational principle for mean dimension [J].
Lindenstrauss, Elon ;
Tsukamoto, Masaki .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2019, 29 (04) :1048-1109
[9]   From Rate Distortion Theory to Metric Mean Dimension: Variational Principle [J].
Lindenstrauss, Elon ;
Tsukamoto, Masaki .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (05) :3590-3609
[10]   Mean dimension and an embedding problem: An example [J].
Lindenstrauss, Elon ;
Tsukamoto, Masaki .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (02) :573-584