Artificial intelligence for predicting pulmonary embolism: A review of machine learning approaches and performance evaluation

被引:0
作者
Puchades, Ramon [1 ,2 ]
Tung-Chen, Yale [1 ]
Salgueiro, Giorgina [1 ]
Lorenzo, Alicia [1 ]
Sancho, Teresa [1 ]
Capitan, Carmen Fernandez [1 ]
机构
[1] La Paz Univ Hosp, Internal Med Serv, Infect Dis Unit, Madrid 28046, Spain
[2] Paseo Castellana 261, Madrid 28046, Spain
关键词
Artificial Intelligence; Machine learning; Pulmonary embolism;
D O I
10.1016/j.thromres.2023.12.002
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:9 / 11
页数:3
相关论文
共 10 条
[1]   Clinical prediction rules for pulmonary embolism: a systematic review and meta-analysis [J].
Ceriani, E. ;
Combescure, C. ;
Le Gal, G. ;
Nendaz, M. ;
Perneger, T. ;
Bounameaux, H. ;
Perrier, A. ;
Righini, M. .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2010, 8 (05) :957-970
[2]   Acute Pulmonary Embolism A Review [J].
Freund, Yonathan ;
Cohen-Aubart, Fleur ;
Bloom, Ben .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2022, 328 (13) :1336-1345
[3]   Beyond the d-dimer-Machine-learning assisted pre-test probability evaluation in patients with suspected pulmonary embolism and elevated d-dimers [J].
Gawlitza, Joshua ;
Ziegelmayer, Sebastian ;
Wilkens, Heinrike ;
Jagoda, Philippe ;
Raczeck, Paul ;
Buecker, Arno ;
Stroeder, Jonas .
THROMBOSIS RESEARCH, 2021, 205 :11-16
[4]   Construction of a Risk Prediction Model for Hospital-Acquired Pulmonary Embolism in Hospitalized Patients [J].
Hou, Lengchen ;
Hu, Longjun ;
Gao, Wenxue ;
Sheng, Wenbo ;
Hao, Zedong ;
Chen, Yiwei ;
Li, Jiyu .
CLINICAL AND APPLIED THROMBOSIS-HEMOSTASIS, 2021, 27
[5]   Prediction of venous thromboembolism with machine learning techniques in young-middle-aged inpatients [J].
Liu, Hua ;
Yuan, Hua ;
Wang, Yongmei ;
Huang, Weiwei ;
Xue, Hui ;
Zhang, Xiuying .
SCIENTIFIC REPORTS, 2021, 11 (01)
[6]   Systematic review and meta-analysis of test accuracy for the diagnosis of suspected pulmonary embolism [J].
Patel, Parth ;
Patel, Payal ;
Bhatt, Meha ;
Braun, Cody ;
Begum, Housne ;
Wiercioch, Wojtek ;
Varghese, Jamie ;
Wooldridge, David ;
Alturkmani, Hani ;
Thomas, Merrill ;
Baig, Mariam ;
Bahaj, Waled ;
Khatib, Rasha ;
Kehar, Rohan ;
Ponnapureddy, Rakesh ;
Sethi, Anchal ;
Mustafa, Ahmad ;
Lim, Wendy ;
Le Gal, Gregoire ;
Bates, Shannon M. ;
Haramati, Linda B. ;
Kline, Jeffrey ;
Lang, Eddy ;
Righini, Marc ;
Kalot, Mohamad A. ;
Husainat, Nedaa M. ;
Al Jabiri, Yazan Nayif ;
Schunemann, Holger J. ;
Mustafa, Reem A. .
BLOOD ADVANCES, 2020, 4 (18) :4296-4311
[7]   Machine learning in the coagulation and hemostasis arena: an overview and evaluation of methods, review of literature, and future directions [J].
Rashidi, Hooman H. ;
Bowers, Kelly A. ;
Gil, Morayma Reyes .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2023, 21 (04) :728-743
[8]   Predicting pulmonary embolism among hospitalized patients with machine learning algorithms [J].
Ryan, Logan ;
Maharjan, Jenish ;
Mataraso, Samson ;
Barnes, Gina ;
Hoffman, Jana ;
Mao, Qingqing ;
Calvert, Jacob ;
Das, Ritankar .
PULMONARY CIRCULATION, 2022, 12 (01)
[9]   Massive external validation of a machine learning algorithm to predict pulmonary embolism in hospitalized patients [J].
Shen, Jieru ;
Chetty, Satish Casie ;
Shokouhi, Sepideh ;
Maharjan, Jenish ;
Chuba, Yevheniy ;
Calvert, Jacob ;
Mao, Qingqing .
THROMBOSIS RESEARCH, 2022, 216 :14-21
[10]   Comparison of the Wells score with the revised Geneva score for assessing suspected pulmonary embolism: a systematic review and meta-analysis [J].
Shen, Jun-Hua ;
Chen, Hong-Lin ;
Chen, Jian-Rong ;
Xing, Jia-Li ;
Gu, Peng ;
Zhu, Bao-Feng .
JOURNAL OF THROMBOSIS AND THROMBOLYSIS, 2016, 41 (03) :482-492