Imputing stem frequency distributions using harvester and airborne laser scanner data: a comparison of inventory approaches

被引:1
|
作者
Noordermeer, Lennart [1 ]
Orka, Hans Ole [1 ]
Gobakken, Terje [1 ]
机构
[1] Norwegian Univ Life Sci, Fac Environm Sci & Nat Resource Management, POB 5003, NO-1432 As, Norway
关键词
airborne laser scanning; forest inventory; harvester data; inventory approaches; FOREST STAND CHARACTERISTICS; INDIVIDUAL TREE DETECTION; DIAMETER DISTRIBUTIONS; SINGLE-TREE; ABOVEGROUND BIOMASS; LIDAR; DENSITY; HEIGHT; MODEL; ALGORITHMS;
D O I
10.14214/sf.23023
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Stem frequency distributions provide useful information for pre-harvest planning. We compared four inventory approaches for imputing stem frequency distributions using harvester data as reference data and predictor variables computed from airborne laser scanner (ALS) data. We imputed distributions and stand mean values of stem diameter, tree height, volume, and sawn wood volume using the k-nearest neighbor technique. We compared the inventory approaches: (1) individual tree crown (ITC), semi-ITC, area-based (ABA) and enhanced ABA (EABA). We assessed the accuracies of imputed distributions using a variant of the Reynold's error index, obtaining the best mean accuracies of 0.13, 0.13, 0.10 and 0.10 for distributions of stem diameter, tree height, volume and sawn wood volume, respectively. Accuracies obtained using the semi-ITC, ABA and EABA inventory approaches were significantly better than accuracies obtained using the ITC approach. The forest attribute, inventory approach, stand size and the laser pulse density had significant effects on the accuracies of imputed frequency distributions, however the ALS delay and percentage of deciduous trees did not. This study highlights the utility of harvester and ALS data for imputing stem frequency distributions in pre-harvest inventories.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Estimating biomass and soil carbon change at the level of forest stands using repeated forest surveys assisted by airborne laser scanner data
    Strimbu, Victor F.
    Naesset, Erik
    Orka, Hans Ole
    Liski, Jari
    Petersson, Hans
    Gobakken, Terje
    CARBON BALANCE AND MANAGEMENT, 2023, 18 (01)
  • [32] MAPPING FOREST SPECIES COMPOSITION USING IMAGING SPECTROMETRY AND AIRBORNE LASER SCANNER DATA
    Torabzadeh, H.
    Morsdorf, F.
    Leiterer, R.
    Schaepman, M. E.
    SMPR CONFERENCE 2013, 2013, 40-1-W3 : 437 - 440
  • [33] GENERALIZED SPATIAL MODELS OF FOREST STRUCTURE USING AIRBORNE MULTISPECTRAL AND LASER SCANNER DATA
    Latifi, Hooman
    Koch, Barbara
    ISPRS HANNOVER WORKSHOP 2011: HIGH-RESOLUTION EARTH IMAGING FOR GEOSPATIAL INFORMATION, 2011, 39-4 (W19): : 173 - 179
  • [34] Determination of mean tree height of forest stands using airborne laser scanner data
    Naesset, E
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 1997, 52 (02) : 49 - 56
  • [35] Detection of biomass change in a Norwegian mountain forest area using small footprint airborne laser scanner data
    Bollandsas, Ole Martin
    Gregoire, Timothy G.
    Naesset, Erik
    Oyen, Bernt-Havard
    STATISTICAL METHODS AND APPLICATIONS, 2013, 22 (01) : 113 - 129
  • [36] Plot-level Forest Volume Estimation Using Airborne Laser Scanner and TM Data, Comparison of Boosting and Random Forest Tree Regression Algorithms
    Shataee, Shaban
    Weinaker, Holger
    Babanejad, Manoucher
    SPATIAL STATISTICS 2011: MAPPING GLOBAL CHANGE, 2011, 7 : 68 - 73
  • [37] Growth-Competition-Based Stem Diameter and Volume Modeling for Tree-Level Forest Inventory Using Airborne LiDAR Data
    Lo, Chien-Shun
    Lin, Chinsu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (04): : 2216 - 2226
  • [38] Indirect and direct estimation of forest biomass change using forest inventory and airborne laser scanning data
    McRoberts, Ronald E.
    Naesset, Erik
    Gobakken, Terje
    Bollandsas, Ole Martin
    REMOTE SENSING OF ENVIRONMENT, 2015, 164 : 36 - 42
  • [39] An Automated Approach for Extracting Forest Inventory Data from Individual Trees Using a Handheld Mobile Laser Scanner
    Zeybek, Mustafa
    Vatandaslar, Can
    CROATIAN JOURNAL OF FOREST ENGINEERING, 2021, 42 (03) : 515 - 528
  • [40] Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data
    Breidenbach, Johannes
    Naesset, Erik
    Lien, Vegard
    Gobakken, Terje
    Solberg, Svein
    REMOTE SENSING OF ENVIRONMENT, 2010, 114 (04) : 911 - 924