Imputing stem frequency distributions using harvester and airborne laser scanner data: a comparison of inventory approaches

被引:1
|
作者
Noordermeer, Lennart [1 ]
Orka, Hans Ole [1 ]
Gobakken, Terje [1 ]
机构
[1] Norwegian Univ Life Sci, Fac Environm Sci & Nat Resource Management, POB 5003, NO-1432 As, Norway
关键词
airborne laser scanning; forest inventory; harvester data; inventory approaches; FOREST STAND CHARACTERISTICS; INDIVIDUAL TREE DETECTION; DIAMETER DISTRIBUTIONS; SINGLE-TREE; ABOVEGROUND BIOMASS; LIDAR; DENSITY; HEIGHT; MODEL; ALGORITHMS;
D O I
10.14214/sf.23023
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Stem frequency distributions provide useful information for pre-harvest planning. We compared four inventory approaches for imputing stem frequency distributions using harvester data as reference data and predictor variables computed from airborne laser scanner (ALS) data. We imputed distributions and stand mean values of stem diameter, tree height, volume, and sawn wood volume using the k-nearest neighbor technique. We compared the inventory approaches: (1) individual tree crown (ITC), semi-ITC, area-based (ABA) and enhanced ABA (EABA). We assessed the accuracies of imputed distributions using a variant of the Reynold's error index, obtaining the best mean accuracies of 0.13, 0.13, 0.10 and 0.10 for distributions of stem diameter, tree height, volume and sawn wood volume, respectively. Accuracies obtained using the semi-ITC, ABA and EABA inventory approaches were significantly better than accuracies obtained using the ITC approach. The forest attribute, inventory approach, stand size and the laser pulse density had significant effects on the accuracies of imputed frequency distributions, however the ALS delay and percentage of deciduous trees did not. This study highlights the utility of harvester and ALS data for imputing stem frequency distributions in pre-harvest inventories.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Comparison of nearest neighbour approaches for small area estimation of tree species-specific forest inventory attributes in central Europe using airborne laser scanner data
    Breidenbach, Johannes
    Nothdurft, Arne
    Kaendler, Gerald
    EUROPEAN JOURNAL OF FOREST RESEARCH, 2010, 129 (05) : 833 - 846
  • [2] Prediction of Species-Specific Volume Using Different Inventory Approaches by Fusing Airborne Laser Scanning and Hyperspectral Data
    Kandare, Kaja
    Dalponte, Michele
    Orka, Hans Ole
    Frizzera, Lorenzo
    Naesset, Erik
    REMOTE SENSING, 2017, 9 (05)
  • [3] Comparison of nearest neighbour approaches for small area estimation of tree species-specific forest inventory attributes in central Europe using airborne laser scanner data
    Johannes Breidenbach
    Arne Nothdurft
    Gerald Kändler
    European Journal of Forest Research, 2010, 129 : 833 - 846
  • [4] Modeling Aboveground Biomass in Dense Tropical Submontane Rainforest Using Airborne Laser Scanner Data
    Hansen, Endre Hofstad
    Gobakken, Terje
    Bollandsas, Ole Martin
    Zahabu, Eliakimu
    Naesset, Erik
    REMOTE SENSING, 2015, 7 (01) : 788 - 807
  • [5] Using Airborne Laser Scanner Data and CIR Orthophotos to Estimate the Stem Volume of Forest Stands
    Straub, Christoph
    Dees, Matthias
    Weinacker, Holger
    Koch, Barbara
    PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2009, (03): : 277 - 287
  • [6] Non-parametric prediction of diameter distributions using airborne laser scanner data
    Maltamo, Matti
    Naesset, Erik
    Bollandsas, Ole M.
    Gobakken, Terje
    Packalen, Petteri
    SCANDINAVIAN JOURNAL OF FOREST RESEARCH, 2009, 24 (06) : 541 - 553
  • [7] Predicting Forest Inventory Attributes Using Airborne Laser Scanning, Aerial Imagery, and Harvester Data
    Saukkola, Atte
    Melkas, Timo
    Riekki, Kirsi
    Sirparanta, Sanna
    Peuhkurinen, Jussi
    Holopainen, Markus
    Hyyppa, Juha
    Vastaranta, Mikko
    REMOTE SENSING, 2019, 11 (07)
  • [8] Operational prediction of forest attributes using standardised harvester data and airborne laser scanning data in Sweden
    Soderberg, Jon
    Wallerman, Jorgen
    Almang, Anders
    Moller, Johan J.
    Willen, Erik
    SCANDINAVIAN JOURNAL OF FOREST RESEARCH, 2021, 36 (04) : 306 - 314
  • [9] Classifications of Forest Change by Using Bitemporal Airborne Laser Scanner Data
    Noordermeer, Lennart
    Okseter, Roar
    Orka, Hans Ole
    Gobakken, Terje
    Nxsset, Erik
    Bollandsas, Ole Martin
    REMOTE SENSING, 2019, 11 (18)
  • [10] Estimating Single Tree Stem Volume of Pinus sylvestris Using Airborne Laser Scanner and Multispectral Line Scanner Data
    Straub, Christoph
    Koch, Barbara
    REMOTE SENSING, 2011, 3 (05) : 929 - 944