Practical Compass of Single-Cell RNA-Seq Analysis

被引:3
作者
Okada, Hiroyuki [1 ,2 ,3 ]
Chung, Ung-il [1 ,4 ]
Hojo, Hironori [1 ,4 ]
机构
[1] Univ Tokyo, Grad Sch Med, Ctr Dis Biol & Integrat Med, Tokyo 1138655, Japan
[2] Univ Tokyo, Dept Orthopaed Surg, Tokyo, Japan
[3] Harvard Sch Dent Med, Dept Oral Med Infect & Immun, Boston, MA 02115 USA
[4] Univ Tokyo, Grad Sch Engn, Dept Bioengn, Tokyo, Japan
关键词
Single cell RNA-seq; Transcriptome; Dry analysis; Computational analysis; Practical compass;
D O I
10.1007/s11914-023-00840-4
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose of Review This review paper provides step-by-step instructions on the fundamental process, from handling fastq datasets to illustrating plots and drawing trajectories. Recent Findings The number of studies using single-cell RNA-seq (scRNA-seq) is increasing. scRNA-seq revealed the heterogeneity or diversity of the cellular populations. scRNA-seq also provides insight into the interactions between different cell types. User-friendly scRNA-seq packages for ligand-receptor interactions and trajectory analyses are available. In skeletal biology, osteoclast differentiation, fracture healing, ectopic ossification, human bone development, and the bone marrow niche have been examined using scRNA-seq. scRNA-seq data analysis tools are still being developed, even at the fundamental step of dataset integration. However, updating the latest information is difficult for many researchers. Investigators and reviewers must share their knowledge of in silico scRNA-seq for better biological interpretation. Summary This review article aims to provide a useful guide for complex analytical processes in single-cell RNA-seq data analysis.
引用
收藏
页码:433 / 440
页数:8
相关论文
共 52 条
[1]  
Aibar S, 2016, AUCell
[2]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
[3]   Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data [J].
Andrews, Tallulah S. ;
Kiselev, Vladimir Yu ;
McCarthy, Davis ;
Hemberg, Martin .
NATURE PROTOCOLS, 2021, 16 (01) :1-9
[4]   Method of the Year 2013 [J].
不详 .
NATURE METHODS, 2014, 11 (01) :1-1
[5]   Deciphering cell-cell interactions and communication from gene expression [J].
Armingol, Erick ;
Officer, Adam ;
Harismendy, Olivier ;
Lewis, Nathan E. .
NATURE REVIEWS GENETICS, 2021, 22 (02) :71-88
[6]   Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization [J].
Baccin, Chiara ;
Al-Sabah, Jude ;
Velten, Lars ;
Helbling, Patrick M. ;
Gruenschlaeger, Florian ;
Hernandez-Malmierca, Pablo ;
Nombela-Arrieta, Cesar ;
Steinmetz, Lars M. ;
Trumpp, Andreas ;
Haas, Simon .
NATURE CELL BIOLOGY, 2020, 22 (01) :38-+
[7]  
Badia IMP, 2022, Bioinform Adv., V2, pvbac016
[8]   Generalizing RNA velocity to transient cell states through dynamical modeling [J].
Bergen, Volker ;
Lange, Marius ;
Peidli, Stefan ;
Wolf, F. Alexander ;
Theis, Fabian J. .
NATURE BIOTECHNOLOGY, 2020, 38 (12) :1408-1414
[9]   NicheNet: modeling intercellular communication by linking ligands to target genes [J].
Browaeys, Robin ;
Saelens, Wouter ;
Saeys, Yvan .
NATURE METHODS, 2020, 17 (02) :159-+
[10]   A Python']Python library for probabilistic analysis of single-cell omics data [J].
Gayoso, Adam ;
Lopez, Romain ;
Xing, Galen ;
Boyeau, Pierre ;
Amiri, Valeh Valiollah Pour ;
Hong, Justin ;
Wu, Katherine ;
Jayasuriya, Michael ;
Mehlman, Edouard ;
Langevin, Maxime ;
Liu, Yining ;
Samaran, Jules ;
Misrachi, Gabriel ;
Nazaret, Achille ;
Clivio, Oscar ;
Xu, Chenling ;
Ashuach, Tal ;
Gabitto, Mariano ;
Lotfollahi, Mohammad ;
Svensson, Valentine ;
Beltrame, Eduardo da Veiga ;
Kleshchevnikov, Vitalii ;
Talavera-Lopez, Carlos ;
Pachter, Lior ;
Theis, Fabian J. ;
Streets, Aaron ;
Jordan, Michael I. ;
Regier, Jeffrey ;
Yosef, Nir .
NATURE BIOTECHNOLOGY, 2022, 40 (02) :163-166