Clinical Features, Non-Contrast CT Radiomic and Radiological Signs in Models for the Prediction of Hematoma Expansion in Intracerebral Hemorrhage

被引:2
|
作者
Chen, Zejia Frank [1 ]
Zhang, Liying [1 ]
Carrington, Andre M. [1 ,2 ,3 ]
Thornhill, Rebecca [2 ]
Miguel, Olivier [1 ,2 ]
Auriat, Angela M. [1 ,2 ]
Omid-Fard, Nima [2 ]
Hiremath, Shivaprakash [2 ]
Tshemeister Abitbul, Vered [1 ,2 ]
Dowlatshahi, Dar [1 ,4 ]
Demchuk, Andrew [5 ]
Gladstone, David [6 ]
Morotti, Andrea [7 ]
Casetta, Ilaria [8 ]
Fainardi, Enrico [9 ]
Huynh, Thien [10 ,11 ]
Elkabouli, Marah [1 ]
Talbot, Zoe [1 ]
Melkus, Gerd [1 ,2 ]
Aviv, Richard, I [1 ,2 ,12 ]
机构
[1] Ottawa Hosp Res Inst, Ottawa, ON, Canada
[2] Univ Ottawa, Dept Radiol Radiat Oncol & Med Phys, Ottawa, ON, Canada
[3] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON, Canada
[4] Univ Ottawa, Dept Med Neurol, Ottawa, ON, Canada
[5] Foothills Med Ctr, Dept Med Neurol, Calgary, AB, Canada
[6] Univ Toronto, Sunnybrook Hlth Sci Ctr, Dept Med Neurol, Toronto, ON, Canada
[7] ASST Spedali Civili Brescia, Dept Neurol Sci & Vis, Neurol Unit, Brescia, Italy
[8] Univ Ferrara, Neurol Clin, Ferrara, Italy
[9] Univ Florence, Dept Expt & Clin Biomed Sci, Neuroradiol Unit, Florence, Italy
[10] Mayo Clin, Dept Radiol, Jacksonville, FL USA
[11] Mayo Clin, Dept Neurosurg, Jacksonville, FL USA
[12] Univ Ottawa, Ottawa Hosp, Dept Radiol, Gen Campus,CPCR Bldg,Room L2121, Ottawa, ON K1H 1M2, Canada
来源
CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES | 2023年 / 74卷 / 04期
基金
加拿大创新基金会;
关键词
hematoma expansion; intracerebral hemorrhage; radiomics; machine learning; non-contrast CT; NONCONTRAST COMPUTED-TOMOGRAPHY; GROWTH; SCORES;
D O I
10.1177/08465371231168383
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeRapid identification of hematoma expansion (HE) risk at baseline is a priority in intracerebral hemorrhage (ICH) patients and may impact clinical decision making. Predictive scores using clinical features and Non-Contract Computed Tomography (NCCT)-based features exist, however, the extent to which each feature set contributes to identification is limited. This paper aims to investigate the relative value of clinical, radiological, and radiomics features in HE prediction.MethodsOriginal data was retrospectively obtained from three major prospective clinical trials ["Spot Sign" Selection of Intracerebral Hemorrhage to Guide Hemostatic Therapy (SPOTLIGHT)NCT01359202; The Spot Sign for Predicting and Treating ICH Growth Study (STOP-IT)NCT00810888] Patients baseline and follow-up scans following ICH were included. Clinical, NCCT radiological, and radiomics features were extracted, and multivariate modeling was conducted on each feature set.Results317 patients from 38 sites met inclusion criteria. Warfarin use (p=0.001) and GCS score (p=0.046) were significant clinical predictors of HE. The best performing model for HE prediction included clinical, radiological, and radiomic features with an area under the curve (AUC) of 87.7%. NCCT radiological features improved upon clinical benchmark model AUC by 6.5% and a clinical & radiomic combination model by 6.4%. Addition of radiomics features improved goodness of fit of both clinical (p=0.012) and clinical & NCCT radiological (p=0.007) models, with marginal improvements on AUC. Inclusion of NCCT radiological signs was best for ruling out HE whereas the radiomic features were best for ruling in HE.ConclusionNCCT-based radiological and radiomics features can improve HE prediction when added to clinical features. Visual Abstract Objectif : L'identification rapide du risque d'expansion d'un hematome avant le debut des traitements est une priorite chez les patients ayant une hemorragie intracerebrale (HI) et elle peut avoir des consequences sur la prise de decisions cliniques. Il existe des scores predictifs utilisant les caracteristiques cliniques et les caracteristiques basees sur la tomodensitometrie sans contraste (TDM-sc). Toutefois, la portee de la contribution a l'identification de chaque ensemble de caracteristiques est limitee. Cet article vise a etudier la valeur relative des caracteristiques cliniques, radiologiques et radiomiques pour la prediction de l'expansion des hematomes. Methodes : Les donnees originales ont ete obtenues retrospectivement a partir de deux etudes cliniques prospectives majeures Spotlight et Spot-ITrr; : << Spot Sign >> Selection of Intracerebral Hemorrhage to Guide Hemostatic Therapy (SPOTLIGHT) (NCT01359202); The Spot Sign for Predicting and Treating ICH Growth Study (STOP-IT) (NCT00810888). Des examens d'imagerie de patients ayant souffert d'une HI effectues avant les traitements et au cours du suivi ont ete inclus. Les caracteristiques cliniques, radiologiques (TDM-sc) et radiomiques ont ete extraites et une modelisation multifactorielle a ete effectuee sur chaque ensemble de caracteristiques. Resultats : Une population de 317 patients provenant de 38 centres satisfaisait les criteres d'inclusion. L'utilisation de la warfarine (P = 0.001) et le score GCS (P = 0.046) ont ete des facteurs cliniques predictifs de l'expansion de l'hematome. Le modele le plus performant pour la prediction de l'expansion de l'hematome incluait les caracteristiques cliniques, radiologiques et radiomiques et presentait une aire sous la courbe (ASC) de 87.7 %. Les caracteristiques radiologiques (TDM-sc) ont ameliore de 6.5 % l'ASC du modele de reference clinique et de 6.4 % celle d'un modele combinant clinique et radiomique. L'ajout des caracteristiques radiomiques a ameliore la qualite d'adaptation des modeles cliniques et radiologiques (TDM-sc) avec une amelioration marginale de l'ASC. L'inclusion des signes radiologiques (TDM-sc) a ete le meilleur moyen d'ecarter un diagnostic d'hematome, tandis que les caracteristiques cliniques ont ete les meilleures pour confirmer son existence. Conclusions : Les caracteristiques radiologiques basees sur une TDM sans contraste et les caracteristiques radiomiques peuvent ameliorer la prediction de l'expansion d'un hematome intracerebral quand elles sont ajoutees aux caracteristiques cliniques.
引用
收藏
页码:713 / 722
页数:10
相关论文
共 50 条
  • [1] Clinical Features, Non-Contrast CT Radiomic and Radiological Signs in Models for the Prediction of Hematoma Expansion in Intracerebral Hemorrhage
    Auriat, Angela
    Chen, Zejia
    Zhang, Liying
    Carrington, Andre
    Thornhill, Rebecca
    Miguel, Olivier
    Fard, Nima Omid
    Hiremath, Shivaprakash
    Abitbul, Vered Tshemeister
    Dowlatshashi, Dar
    Demchuk, Andrew
    Gladstone, David
    Morotti, Andrea
    Casetta, Ilaria
    Fainardi, Enrico
    Huynh, Thien
    Elkabouli, Marah
    Talbot, Zoe
    Melkus, Gerd
    Aviv, Richard
    CEREBROVASCULAR DISEASES, 2023, 52 : 63 - 63
  • [2] Radiomic markers of intracerebral hemorrhage expansion on non-contrast CT: independent validation and comparison with visual markers
    Haider, Stefan P.
    Qureshi, Adnan I.
    Jain, Abhi
    Tharmaseelan, Hishan
    Berson, Elisa R.
    Zeevi, Tal
    Werring, David J.
    Gross, Moritz
    Mak, Adrian
    Malhotra, Ajay
    Sansing, Lauren H.
    Falcone, Guido J.
    Sheth, Kevin N.
    Payabvash, Seyedmehdi
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [3] A predictive nomogram for intracerebral hematoma expansion based on non-contrast computed tomography and clinical features
    Zhang, Xiuping
    Gao, Qianqian
    Chen, Kaidong
    Wu, Qiuxiang
    Chen, Bixue
    Zeng, Shangyu
    Fang, Xiangming
    NEURORADIOLOGY, 2022, 64 (08) : 1547 - 1556
  • [4] Radiomic Features of Acute Cerebral Hemorrhage on Non-Contrast CT Associated with Patient Survival
    Zaman, Saif
    Dierksen, Fiona
    Knapp, Avery
    Haider, Stefan P.
    Abou Karam, Gaby
    Qureshi, Adnan I.
    Falcone, Guido J.
    Sheth, Kevin N.
    Payabvash, Seyedmehdi
    DIAGNOSTICS, 2024, 14 (09)
  • [5] Can a Non-Contrast CT Scan of Brain Predict Hematoma Expansion in Acute Intracerebral Hemorrhage?
    Salhotra, Ripenmeet
    INDIAN JOURNAL OF SURGERY, 2020, 82 (05) : 976 - 977
  • [6] Non-contrast CT markers of intracerebral hematoma expansion: a reliability study
    Nehme, Ahmad
    Ducroux, Celina
    Panzini, Marie-Andree
    Bard, Celine
    Bereznyakova, Olena
    Boisseau, William
    Deschaintre, Yan
    Diestro, Jose Danilo Bengzon
    Guilbert, Francois
    Jacquin, Gregory
    Maallah, Mohamed Taoubane
    Nelson, Kristoff
    Padilha, Igor Gomes
    Poppe, Alexandre Y.
    Rioux, Bastien
    Roy, Daniel
    Touma, Lahoud
    Weill, Alain
    Gioia, Laura C.
    Letourneau-Guillon, Laurent
    EUROPEAN RADIOLOGY, 2022, 32 (09) : 6126 - 6135
  • [7] A non-contrast computed tomography-based radiomics nomogram for the prediction of hematoma expansion in patients with deep ganglionic intracerebral hemorrhage
    Xu, Wei
    Guo, Hongquan
    Li, Huiping
    Dai, Qiliang
    Song, Kangping
    Li, Fangyi
    Zhou, Junjie
    Yao, Jingjiang
    Wang, Zhen
    Liu, Xinfeng
    FRONTIERS IN NEUROLOGY, 2022, 13
  • [8] A predictive nomogram for intracerebral hematoma expansion based on non-contrast computed tomography and clinical features
    Xiuping Zhang
    Qianqian Gao
    Kaidong Chen
    Qiuxiang Wu
    Bixue Chen
    Shangyu Zeng
    Xiangming Fang
    Neuroradiology, 2022, 64 : 1547 - 1556
  • [9] Can a Non-Contrast CT Scan of Brain Predict Hematoma Expansion in Acute Intracerebral Hemorrhage?
    Ripenmeet Salhotra
    Indian Journal of Surgery, 2020, 82 : 976 - 977
  • [10] CT radiomics combined with clinical and radiological factors predict hematoma expansion in hypertensive intracerebral hemorrhage
    Yu, Fei
    Yang, Mingguang
    He, Cheng
    Yang, Yanli
    Peng, Ying
    Yang, Hua
    Lu, Hong
    Liu, Heng
    EUROPEAN RADIOLOGY, 2025, 35 (01) : 6 - 19