mvPPT: A Highly Efficient and Sensitive Pathogenicity Prediction Tool for Missense Variants

被引:4
|
作者
Tong, Shi-Yuan [1 ]
Fan, Ke [1 ]
Zhou, Zai-Wei [2 ]
Liu, Lin-Yun [1 ]
Zhang, Shu-Qing [1 ]
Fu, Yinghui [1 ]
Wang, Guang-Zhong [3 ]
Zhu, Ying [4 ]
Yu, Yong-Chun [1 ]
机构
[1] Fudan Univ, Jingan Dist Cent Hosp Shanghai, Inst Brain Sci, MOE Frontiers Ctr Brain Sci,State Key Lab Med Neur, Shanghai 200032, Peoples R China
[2] Shanghai Xunyin Biotechnol Co Ltd, Shanghai 201802, Peoples R China
[3] Univ Chinese Acad Sci, Chinese Acad Sci, Shanghai Inst Nutr & Hlth, CAS Key Lab Computat Biol, Shanghai 200031, Peoples R China
[4] Fudan Univ, MOE Frontiers Ctr Brain Sci, Inst Brain Sci, State Key Lab Med Neurobiol,Huashan Hosp, Shanghai 200032, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Machine learning; Missense variant; Genomics; Computational biology; Pathogenicity prediction; FUNCTIONAL IMPACT; DATABASE; MUTATIONS; DIAGNOSIS; ELEMENTS;
D O I
10.1016/j.gpb.2022.07.005
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Next-generation sequencing technologies both boost the discovery of variants in the human genome and exacerbate the challenges of pathogenic variant identification. In this study, we developed Pathogenicity Prediction Tool for missense variants (mvPPT), a highly sensitive and accurate missense variant classifier based on gradient boosting. mvPPT adopts high-confidence training sets with a wide spectrum of variant profiles, and extracts three categories of features, including scores from existing prediction tools, frequencies (allele frequencies, amino acid frequencies, and genotype frequencies), and genomic context. Compared with established predictors, mvPPT achieves superior performance in all test sets, regardless of data source. In addition, our study also provides guidance for training set and feature selection strategies, as well as reveals highly relevant features, which may further provide biological insights into variant pathogenicity. mvPPT is freely available at http://www.mvppt.club/.
引用
收藏
页码:414 / 426
页数:13
相关论文
共 50 条
  • [1] Improved pathogenicity prediction for rare human missense variants
    Wu, Yingzhou
    Li, Roujia
    Sun, Song
    Weile, Jochen
    Roth, Frederick P.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2021, 108 (10) : 1891 - 1906
  • [2] Performance of Mutation Pathogenicity Prediction Methods on Missense Variants
    Thusberg, Janita
    Olatubosun, Ayodeji
    Vihinen, Mauno
    HUMAN MUTATION, 2011, 32 (04) : 358 - 368
  • [3] Pathogenicity Prediction of GABAA Receptor Missense Variants
    Wang, Ya-Juan
    Vu, Giang H.
    Mu, Ting-Wei
    ISRAEL JOURNAL OF CHEMISTRY, 2024,
  • [4] Predicting pathogenicity of missense variants with weakly supervised regression
    Cao, Yue
    Sun, Yuanfei
    Karimi, Mostafa
    Chen, Haoran
    Moronfoye, Oluwaseyi
    Shen, Yang
    HUMAN MUTATION, 2019, 40 (09) : 1579 - 1592
  • [5] A domain damage index to prioritizing the pathogenicity of missense variants
    Chen, Hua-Chang
    Wang, Jing
    Liu, Qi
    Shyr, Yu
    HUMAN MUTATION, 2021, 42 (11) : 1503 - 1517
  • [6] MISTIC: A prediction tool to reveal disease-relevant deleterious missense variants
    Chennen, Kirsley
    Weber, Thomas
    Lornage, Xaviere
    Kress, Arnaud
    Bohm, Johann
    Thompson, Julie
    Laporte, Jocelyn
    Poch, Olivier
    PLOS ONE, 2020, 15 (07):
  • [7] Performance evaluation of pathogenicity-computation methods for missense variants
    Li, Jinchen
    Zhao, Tingting
    Zhang, Yi
    Zhang, Kun
    Shi, Leisheng
    Chen, Yun
    Wang, Xingxing
    Sun, Zhongsheng
    NUCLEIC ACIDS RESEARCH, 2018, 46 (15) : 7793 - 7804
  • [8] REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants
    Ioannidis, Nilah M.
    Rothstein, Joseph H.
    Pejaver, Vikas
    Middha, Sumit
    McDonnell, Shannon K.
    Baheti, Saurabh
    Musolf, Anthony
    Li, Qing
    Holzinger, Emily
    Karyadi, Danielle
    Cannon-Albright, Lisa A.
    Teerlink, Craig C.
    Stanford, Janet L.
    Isaacs, William B.
    Xu, Jianfeng
    Cooney, Kathleen A.
    Lange, Ethan M.
    Schleutker, Johanna
    Carpten, John D.
    Powell, Isaac J.
    Cussenot, Olivier
    Cancel-Tassin, Geraldine
    Giles, Graham G.
    MacInnis, Robert J.
    Maier, Christiane
    Hsieh, Chih-Lin
    Wiklund, Fredrik
    Catalona, William J.
    Foulkes, William D.
    Mandal, Diptasri
    Eeles, Rosalind A.
    Kote-Jarai, Zsofia
    Bustamante, Carlos D.
    Schaid, Daniel J.
    Hastie, Trevor
    Ostrander, Elaine A.
    Bailey-Wilson, Joan E.
    Radivojac, Predrag
    Thibodeau, Stephen N.
    Whittemore, Alice S.
    Sieh, Weiva
    AMERICAN JOURNAL OF HUMAN GENETICS, 2016, 99 (04) : 877 - 885
  • [9] Rhapsody: predicting the pathogenicity of human missense variants
    Ponzoni, Luca
    Penaherrera, Daniel A.
    Oltvai, Zoltan N.
    Bahar, Ivet
    BIOINFORMATICS, 2020, 36 (10) : 3084 - 3092
  • [10] InMeRF: prediction of pathogenicity of missense variants by individual modeling for each amino acid substitution
    Takeda, Jun-ichi
    Nanatsue, Kentaro
    Yamagishi, Ryosuke
    Ito, Mikako
    Haga, Nobuhiko
    Hirata, Hiromi
    Ogi, Tomoo
    Ohno, Kinji
    NAR GENOMICS AND BIOINFORMATICS, 2020, 2 (02)