GLF-Net: A Semantic Segmentation Model Fusing Global and Local Features for High-Resolution Remote Sensing Images

被引:5
|
作者
Song, Wanying [1 ]
Zhou, Xinwei [1 ]
Zhang, Shiru [1 ]
Wu, Yan [2 ]
Zhang, Peng [2 ]
机构
[1] Xian Univ Sci & Technol, Sch Commun & Informat Engn, Xian Key Lab Network Convergence Commun, Xian 710054, Peoples R China
[2] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
关键词
high-resolution remote sensing; semantic segmentation; global context information; fine-grained feature; feature fusion;
D O I
10.3390/rs15194649
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Semantic segmentation of high-resolution remote sensing images holds paramount importance in the field of remote sensing. To better excavate and fully fuse the features in high-resolution remote sensing images, this paper introduces a novel Global and Local Feature Fusion Network, abbreviated as GLF-Net, by incorporating the extensive contextual information and refined fine-grained features. The proposed GLF-Net, devised as an encoder-decoder network, employs the powerful ResNet50 as its baseline model. It incorporates two pivotal components within the encoder phase: a Covariance Attention Module (CAM) and a Local Fine-Grained Extraction Module (LFM). And an additional wavelet self-attention module (WST) is integrated into the decoder stage. The CAM effectively extracts the features of different scales from various stages of the ResNet and then encodes them with graph convolutions. In this way, the proposed GLF-Net model can well capture the global contextual information with both universality and consistency. Additionally, the local feature extraction module refines the feature map by encoding the semantic and spatial information, thereby capturing the local fine-grained features in images. Furthermore, the WST maximizes the synergy between the high-frequency and the low-frequency information, facilitating the fusion of global and local features for better performance in semantic segmentation. The effectiveness of the proposed GLF-Net model is validated through experiments conducted on the ISPRS Potsdam and Vaihingen datasets. The results verify that it can greatly improve segmentation accuracy.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] GLF-Net: A Target Detection Method Based on Global and Local Multiscale Feature Fusion of Remote Sensing Aircraft Images
    Yu, Lei
    Hu, Haicheng
    Zhong, Zhi
    Wu, Haoyu
    Deng, Qiuyue
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [2] Dual decoupling semantic segmentation model for high-resolution remote sensing images
    Liu S.
    Li X.
    Yu M.
    Xing G.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (04): : 638 - 647
  • [3] Multiscale Global Context Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Zeng, Qiaolin
    Zhou, Jingxiang
    Tao, Jinhua
    Chen, Liangfu
    Niu, Xuerui
    Zhang, Yumeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [4] Global Multi-Attention UResNeXt for Semantic Segmentation of High-Resolution Remote Sensing Images
    Chen, Zhong
    Zhao, Jun
    Deng, He
    REMOTE SENSING, 2023, 15 (07)
  • [5] UNeXt: An Efficient Network for the Semantic Segmentation of High-Resolution Remote Sensing Images
    Chang, Zhanyuan
    Xu, Mingyu
    Wei, Yuwen
    Lian, Jie
    Zhang, Chongming
    Li, Chuanjiang
    SENSORS, 2024, 24 (20)
  • [6] Edge Guidance Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Ni, Yue
    Liu, Jiahang
    Cui, Jian
    Yang, Yuze
    Wang, Xiaozhen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 9809 - 9822
  • [7] A Deformable Attention Network for High-Resolution Remote Sensing Images Semantic Segmentation
    Zuo, Renxiang
    Zhang, Guangyun
    Zhang, Rongting
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES USING AN IMPROVED TRANSFORMER
    Liu, Yuheng
    Mei, Shaohui
    Zhang, Shun
    Wang, Ye
    He, Mingyi
    Du, Qian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3496 - 3499
  • [9] Dynamic High-Resolution Network for Semantic Segmentation in Remote-Sensing Images
    Guo, Shichen
    Yang, Qi
    Xiang, Shiming
    Wang, Pengfei
    Wang, Xuezhi
    REMOTE SENSING, 2023, 15 (09)
  • [10] Multiscale Cascaded Network for the Semantic Segmentation of High-Resolution Remote Sensing Images
    Zhang, Xiaolu
    Wang, Zhaoshun
    Wei, Anlei
    CANADIAN JOURNAL OF REMOTE SENSING, 2023, 49 (01)