Event-Triggered Adaptive Neural Control for MIMO Nonlinear Systems With Rate-Dependent Hysteresis and Full-State Constraints via Command Filter
被引:8
|
作者:
Wang, Xiaoling
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ, Sch Automat, Qingdao 266071, Peoples R ChinaQingdao Univ, Sch Automat, Qingdao 266071, Peoples R China
Wang, Xiaoling
[1
]
Liu, Jiapeng
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ, Sch Automat, Qingdao 266071, Peoples R ChinaQingdao Univ, Sch Automat, Qingdao 266071, Peoples R China
Liu, Jiapeng
[1
]
Wang, Qing-Guo
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Inst Artificial Intelligence & Future Networks, BNU HKBU United Int Coll, Zhuhai 519087, Peoples R China
Beijing Normal Univ, BNU HKBU United Int Coll, Guangdong Key Lab AI & Multimodal Data Proc, Zhuhai 519087, Peoples R ChinaQingdao Univ, Sch Automat, Qingdao 266071, Peoples R China
Wang, Qing-Guo
[2
,3
]
Yu, Jinpeng
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ, Sch Automat, Qingdao 266071, Peoples R ChinaQingdao Univ, Sch Automat, Qingdao 266071, Peoples R China
Yu, Jinpeng
[1
]
机构:
[1] Qingdao Univ, Sch Automat, Qingdao 266071, Peoples R China
[2] Beijing Normal Univ, Inst Artificial Intelligence & Future Networks, BNU HKBU United Int Coll, Zhuhai 519087, Peoples R China
[3] Beijing Normal Univ, BNU HKBU United Int Coll, Guangdong Key Lab AI & Multimodal Data Proc, Zhuhai 519087, Peoples R China
This article presents an event-triggered adaptive NN command-filtered control for a class of multi-input and multi-output (MIMO) nonlinear systems with unknown rate-dependent hysteresis in the actuator and the constraints on full states. The ETM is used to reduce the communication frequency between controller and actuator. The command filter technique is first employed to solve the dilemma between the nondifferentiable control signal at triggering instants and rate-dependent hysteresis input premise while avoiding the "explosion of complexity" problem. During the backstepping design, the barrier Lyapunov functions are utilized to guarantee that system states will stay in certain regions and the unknown nonlinear items are approximated by adaptive neural networks. The compensating signals are constructed to eliminate filtering errors. The estimates of unknown hysteresis parameters are updated by adaptive laws. The stability analysis is given and the effectiveness of the proposed method is verified by simulation.
机构:
Shanghai Univ Engn Sci, Sch Air Transportat, Shanghai 201620, Peoples R ChinaShanghai Univ Engn Sci, Sch Air Transportat, Shanghai 201620, Peoples R China
Yuan, Jiaxin
Zhang, Chen
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai 200240, Peoples R ChinaShanghai Univ Engn Sci, Sch Air Transportat, Shanghai 201620, Peoples R China
Zhang, Chen
Chen, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Engn Sci, Sch Air Transportat, Shanghai 201620, Peoples R ChinaShanghai Univ Engn Sci, Sch Air Transportat, Shanghai 201620, Peoples R China
机构:
Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150001, Peoples R China
Wang, Jue
Ma, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Control, Harbin 150080, Peoples R China
Harbin Inst Technol, Simulat Ctr, Harbin 150080, Peoples R ChinaHarbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150001, Peoples R China
Ma, Jie
Pan, Huihui
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150001, Peoples R China
Pan, Huihui
Sun, Weichao
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150001, Peoples R China
机构:
Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R ChinaShandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R China
Zhang, Jiaming
Niu, Ben
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R ChinaShandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R China
Niu, Ben
Wang, Ding
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R ChinaShandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R China
Wang, Ding
Wang, Huanqing
论文数: 0引用数: 0
h-index: 0
机构:
Bohai Univ, Sch Math & Phys, Jinzhou 121000, Peoples R ChinaShandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R China
Wang, Huanqing
Duan, Peiyong
论文数: 0引用数: 0
h-index: 0
机构:
Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R ChinaShandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R China
Duan, Peiyong
Zong, Guangdeng
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Engn, Rizhao 276826, Peoples R ChinaShandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R China
机构:
South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
Si, Wenjie
Dong, Xunde
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China