Dynamic visual-guided selection for zero-shot learning

被引:2
|
作者
Zhou, Yuan [1 ]
Xiang, Lei [1 ]
Liu, Fan [1 ]
Duan, Haoran [2 ]
Long, Yang [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Artificial Intelligence, Nanjing 210044, Jiangsu, Peoples R China
[2] Univ Durham, Dept Comp Sci, Durham, England
来源
JOURNAL OF SUPERCOMPUTING | 2024年 / 80卷 / 03期
关键词
Visual-guided selection; Class prototype refinement; Task-relevant regions; Zero-shot learning;
D O I
10.1007/s11227-023-05625-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Zero-shot learning (ZSL) methods currently employed to identify seen or unseen classes rely on semantic attribute prototypes or class information. However, hand-annotated attributes are only for the category rather than for each image belonging to that category. Furthermore, attribute information is inconsistent across different images of the same category due to variant views. Therefore, we propose a dynamic visual-guided selection (DVGS) which helps dynamically focus on different regions and refines class prototype on each image. Instead of directly aligning an image's global feature with its semantic class vector or its local features with all attribute vectors, the proposed method learns a vision-guided soft mask to refine the class prototype for each image. Additionally, it discovers the most task-relevant regions for fine-grained recognition with the refined class prototype. Extensive experiments on three benchmarks verify the effectiveness of our DVGS and achieve the new state-of-the-art. Our DVGS achieved the best results on fine-grained datasets within both the conventional zero-shot learning (CZSL) and generalized zero-shot learning (GZSL) settings. In particular, on the SUN dataset, our DVGS demonstrates a significant superiority of 10.2% in the CZSL setting compared with the second-best approach. Similarly, our method outperforms the second-best method by an average of 4% on CUB in both the CZSL and GZSL settings. Despite securing the second-best result on the AWA2 dataset, DVGS remains closely competitive, trailing the best performance by a mere 3.4% in CZSL and 1.2% in GZSL.
引用
收藏
页码:4401 / 4419
页数:19
相关论文
共 50 条
  • [41] Zero-Shot Kernel Learning
    Zhang, Hongguang
    Koniusz, Piotr
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 7670 - 7679
  • [42] Zero-shot causal learning
    Nilforoshan, Hamed
    Moor, Michael
    Roohani, Yusuf
    Chen, Yining
    Surina, Anja
    Yasunaga, Michihiro
    Oblak, Sara
    Leskovec, Jure
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [43] Zero-shot Metric Learning
    Xu, Xinyi
    Cao, Huanhuan
    Yang, Yanhua
    Yang, Erkun
    Deng, Cheng
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3996 - 4002
  • [44] Active Zero-Shot Learning
    Xie, Sihong
    Wang, Shaoxiong
    Yu, Philip S.
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 1889 - 1892
  • [45] Spherical Zero-Shot Learning
    Shen, Jiayi
    Xiao, Zehao
    Zhen, Xiantong
    Zhang, Lei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (02) : 634 - 645
  • [46] Rebalanced Zero-Shot Learning
    Ye, Zihan
    Yang, Guanyu
    Jin, Xiaobo
    Liu, Youfa
    Huang, Kaizhu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4185 - 4198
  • [47] Incremental Zero-Shot Learning
    Wei, Kun
    Deng, Cheng
    Yang, Xu
    Tao, Dacheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (12) : 13788 - 13799
  • [48] Lifelong Zero-Shot Learning
    Wei, Kun
    Deng, Cheng
    Yang, Xu
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 551 - 557
  • [49] A Unified Approach for Conventional Zero-Shot, Generalized Zero-Shot, and Few-Shot Learning
    Rahman, Shafin
    Khan, Salman
    Porikli, Fatih
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5652 - 5667
  • [50] Consistency-guided pseudo labeling for transductive zero-shot learning
    Yang, Hairui
    Wang, Ning
    Wang, Zhihui
    Wang, Lei
    Li, Haojie
    INFORMATION SCIENCES, 2024, 670