Dynamic visual-guided selection for zero-shot learning

被引:2
|
作者
Zhou, Yuan [1 ]
Xiang, Lei [1 ]
Liu, Fan [1 ]
Duan, Haoran [2 ]
Long, Yang [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Artificial Intelligence, Nanjing 210044, Jiangsu, Peoples R China
[2] Univ Durham, Dept Comp Sci, Durham, England
来源
JOURNAL OF SUPERCOMPUTING | 2024年 / 80卷 / 03期
关键词
Visual-guided selection; Class prototype refinement; Task-relevant regions; Zero-shot learning;
D O I
10.1007/s11227-023-05625-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Zero-shot learning (ZSL) methods currently employed to identify seen or unseen classes rely on semantic attribute prototypes or class information. However, hand-annotated attributes are only for the category rather than for each image belonging to that category. Furthermore, attribute information is inconsistent across different images of the same category due to variant views. Therefore, we propose a dynamic visual-guided selection (DVGS) which helps dynamically focus on different regions and refines class prototype on each image. Instead of directly aligning an image's global feature with its semantic class vector or its local features with all attribute vectors, the proposed method learns a vision-guided soft mask to refine the class prototype for each image. Additionally, it discovers the most task-relevant regions for fine-grained recognition with the refined class prototype. Extensive experiments on three benchmarks verify the effectiveness of our DVGS and achieve the new state-of-the-art. Our DVGS achieved the best results on fine-grained datasets within both the conventional zero-shot learning (CZSL) and generalized zero-shot learning (GZSL) settings. In particular, on the SUN dataset, our DVGS demonstrates a significant superiority of 10.2% in the CZSL setting compared with the second-best approach. Similarly, our method outperforms the second-best method by an average of 4% on CUB in both the CZSL and GZSL settings. Despite securing the second-best result on the AWA2 dataset, DVGS remains closely competitive, trailing the best performance by a mere 3.4% in CZSL and 1.2% in GZSL.
引用
收藏
页码:4401 / 4419
页数:19
相关论文
共 50 条
  • [1] Dynamic visual-guided selection for zero-shot learning
    Yuan Zhou
    Lei Xiang
    Fan Liu
    Haoran Duan
    Yang Long
    The Journal of Supercomputing, 2024, 80 : 4401 - 4419
  • [2] Visual-guided attentive attributes embedding for zero-shot learning
    Zhang, Rui
    Zhu, Qi
    Xu, Xiangyu
    Zhang, Daoqiang
    Huang, Sheng-Jun
    NEURAL NETWORKS, 2021, 143 : 709 - 718
  • [3] Zero-Shot Learning with Attribute Selection
    Guo, Yuchen
    Ding, Guiguang
    Han, Jungong
    Tang, Sheng
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 6870 - 6877
  • [4] Landmark Selection for Zero-shot Learning
    Guo, Yuchen
    Ding, Guiguang
    Han, Jungong
    Yan, Chenggang
    Zhang, Jiyong
    Dai, Qionghai
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 2435 - 2441
  • [5] Zero-Shot Learning via Visual Abstraction
    Antol, Stanislaw
    Zitnick, C. Lawrence
    Parikh, Devi
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 401 - 416
  • [6] Model Selection for Generalized Zero-Shot Learning
    Zhang, Hongguang
    Koniusz, Piotr
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT II, 2019, 11130 : 198 - 204
  • [7] Learning Invariant Visual Representations for Compositional Zero-Shot Learning
    Zhang, Tian
    Liang, Kongming
    Du, Ruoyi
    Sun, Xian
    Ma, Zhanyu
    Guo, Jun
    COMPUTER VISION, ECCV 2022, PT XXIV, 2022, 13684 : 339 - 355
  • [8] Zero-shot recognition with latent visual attributes learning
    Xie, Yurui
    He, Xiaohai
    Zhang, Jing
    Luo, Xiaodong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (37-38) : 27321 - 27335
  • [9] Joint Visual and Semantic Optimization for zero-shot learning
    Wu, Hanrui
    Yan, Yuguang
    Chen, Sentao
    Huang, Xiangkang
    Wu, Qingyao
    Ng, Michael K.
    KNOWLEDGE-BASED SYSTEMS, 2021, 215 (215)
  • [10] Hyperbolic Visual Embedding Learning for Zero-Shot Recognition
    Liu, Shaoteng
    Chen, Jingjing
    Pan, Liangming
    Ngo, Chong-Wah
    Chua, Tat-Seng
    Jiang, Yu-Gang
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 9270 - 9278