Camouflaged object detection with counterfactual intervention

被引:8
|
作者
Li, Xiaofei [1 ]
Li, Hongying [1 ]
Zhou, Hao [2 ]
Yu, Miaomiao [1 ]
Chen, Dong [3 ]
Li, Shuohao [1 ]
Zhang, Jun [1 ]
机构
[1] Natl Univ Def Technol, Lab Big Data & Decis, 109 Deya Rd, Changsha 410003, Hunan, Peoples R China
[2] Naval Univ Engn, Dept Operat & Planning, 717 Jianshe Ave, Wuhan 430033, Hubei, Peoples R China
[3] Natl Univ Def Technol, Sci & Technol Informat Syst Engn Lab, 109 Deya Rd, Changsha 410003, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Camouflaged object detection; Texture-aware; Context-aware; Counterfactual intervention; SEGMENTATION; NETWORK;
D O I
10.1016/j.neucom.2023.126530
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Camouflaged object detection (COD) aims to identify camouflaged objects hiding in their surroundings, which is a valuable yet challenging task. The main challenge is that there are ambiguous semantic biases in the camouflaged object datasets, which affect the results of COD. To address this challenge, we design a counter-factual intervention network (CINet) to mitigate the influences of ambiguous semantic biases and obtain accurate COD. Specifically, our CINet consists of three key modules, i.e., texture-aware interaction module (TIM), context-aware fusion module (CFM), and counterfactual intervention module (CIM). The TIM is designed to extract the refined textures for accurate localization, the CFM is proposed to fuse the multi-scale contextual features to enhance the detection performance, and the CIM is presented to learn more effective textures and make unbiased predictions. Unlike most existing COD methods that directly capture contextual features through the final loss function, we develop a counterfactual intervention strategy to learn more effective contextual textures. Extensive experiments on four challenging benchmark datasets demonstrate that our CINet significantly outperforms 31 state-of-the-art methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A Bayesian Approach to Camouflaged Moving Object Detection
    Zhang, Xiang
    Zhu, Ce
    Wang, Shuai
    Liu, Yipeng
    Ye, Mao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (09) : 2001 - 2013
  • [32] Modeling Aleatoric Uncertainty for Camouflaged Object Detection
    Liu, Jiawei
    Zhang, Jing
    Barnes, Nick
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 2613 - 2622
  • [33] Frequency Perception Network for Camouflaged Object Detection
    Cong, Runmin
    Sun, Mengyao
    Zhang, Sanyi
    Zhou, Xiaofei
    Zhang, Wei
    Zhao, Yao
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 1179 - 1189
  • [34] A MULTICHANNEL LOCALIZATION METHOD FOR CAMOUFLAGED OBJECT DETECTION
    Rahman, Md. Rakibur
    Chowdhury, Md. Mafri
    Sarkar, Md. Shohanur Rahaman
    Karim, Md. Shahriar
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3389 - 3393
  • [35] Edge Perception Camouflaged Object Detection Under Frequency Domain Reconstruction
    Liu, Zijian
    Deng, Xiaoheng
    Jiang, Ping
    Lv, Conghao
    Min, Geyong
    Wang, Xin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 10194 - 10207
  • [36] MAGNet: A Camouflaged Object Detection Network Simulating the Observation Effect of a Magnifier
    Jiang, Xinhao
    Cai, Wei
    Zhang, Zhili
    Jiang, Bo
    Yang, Zhiyong
    Wang, Xin
    ENTROPY, 2022, 24 (12)
  • [37] Camouflaged object detection based on context-aware and boundary refinement
    Shi, Caijuan
    Ren, Bijuan
    Chen, Houru
    Zhao, Lin
    Lin, Chunyu
    Zhao, Yao
    APPLIED INTELLIGENCE, 2023, 53 (19) : 22429 - 22445
  • [38] Alternate guidance network for boundary-aware camouflaged object detection
    Yu, Jinhao
    Chen, Shuhan
    Lu, Lu
    Chen, Zeyu
    Xu, Xiuqi
    Hu, Xuelong
    Zhu, Jinrong
    MACHINE VISION AND APPLICATIONS, 2023, 34 (04)
  • [39] A Cross-Level Iterative Subtraction Network for Camouflaged Object Detection
    Hu, Tongtong
    Zhang, Chao
    Lyu, Xin
    Sun, Xiaowen
    Chen, Shangjing
    Zeng, Tao
    Chen, Jiale
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [40] Camouflaged Object Detection with Feature Grafting and Distractor Aware
    Song, Yuxuan
    Li, Xinyue
    Qi, Lin
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2459 - 2464