Machine learning for rectal cancer prediction based on metabolic changes on amino acids

被引:0
作者
Tavares, Jose [1 ]
Brandao, Pedro [1 ]
Barros, Ivo [1 ]
Goncalves, Jose [1 ]
Praca, Isabel [1 ]
Lacerda, Lucia [1 ]
Santos, Marisa [1 ]
机构
[1] Porto Sch Engn ISEP, Comp Engn Dept, Porto, Portugal
来源
2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS | 2023年
关键词
Machine Learning; Classification; Decision Support; Rectal Cancer;
D O I
10.1109/CBMS58004.2023.00219
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning is an area of Artificial Intelligence in which applying algorithms to a dataset makes it possible to predict results or even discover relationships that would be unnoticeable at first glance. Currently the amount of information available in different areas, especially in healthcare where data collection and analysis seek to define personalized medicine strategies. This is a field where using Machine Learning-based tools can assume a relevant role. This work presents a study of diverse classification algorithms in the area of machine learning applied to identification of amino acid profiles. The authors defined as a major objective to develop a new biomarker profile for prediction and prognosis of rectal cancer. The data involved in the training of classification algorithms refer to patients with metabolic diseases and rectal cancer. The best machine learning classification models will be tested to achieve the most effective decision support system for a most adequate treatment option selection in order to reduce the morbidity and mortality rate.
引用
收藏
页码:214 / 217
页数:4
相关论文
共 18 条
[1]  
[Anonymous], 2023, SIT SCIK LEARN MACH
[2]  
Bohr A., 2020, Artificial Intelligence in Healthcare, P25, DOI [DOI 10.1016/B978-0-12-818438-7.00002-2, https://doi.org/10.1016/B978-0-12-818438-7.00002-2, 10.1016/B978-0-12-818438-7.00002-2]
[3]   Integration of stool microbiota, proteome and amino acid profiles to discriminate patients with adenomas and colorectal cancer [J].
Bosch, Sofie ;
Acharjee, Animesh ;
Quraishi, Mohammed Nabil ;
Bijnsdorp, Irene, V ;
Rojas, Patricia ;
Bakkali, Abdellatif ;
Jansen, Erwin Ew ;
Stokkers, Pieter ;
Kuijvenhoven, Johan ;
Pham, Thang, V ;
Beggs, Andrew D. ;
Jimenez, Connie R. ;
Struys, Eduard A. ;
Gkoutos, Georgios, V ;
de Meij, Tim Gj ;
de Boer, Nanne Kh .
GUT MICROBES, 2022, 14 (01)
[4]   Hallmarks of cancer: of all cancer cells, all the time? [J].
Floor, Sebastien L. ;
Dumont, Jacques E. ;
Maenhaut, Carine ;
Raspe, Eric .
TRENDS IN MOLECULAR MEDICINE, 2012, 18 (09) :509-515
[5]   Peering Into the Black Box of Artificial Intelligence: Evaluation Metrics of Machine Learning Methods [J].
Handelman, Guy S. ;
Kok, Hong Kuan ;
Chandra, Ronil V. ;
Razavi, Amir H. ;
Huang, Shiwei ;
Brooks, Mark ;
Lee, Michael J. ;
Asadi, Hamed .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 212 (01) :38-43
[6]  
Hossin M., 2015, International Journal of Data Mining and Knowledge Management Process, V5, P1
[7]   Utility of machine learning in developing a predictive model for early-age-onset colorectal neoplasia using electronic health records [J].
Hussan, Hisham ;
Zhao, Jing ;
Badu-Tawiah, Abraham K. ;
Stanich, Peter ;
Tabung, Fred ;
Gray, Darrell ;
Ma, Qin ;
Kalady, Matthew ;
Clinton, Steven K. .
PLOS ONE, 2022, 17 (03)
[8]  
Kennion M. O., 2022, HLTH SCI REV
[9]   Machine learning applications in cancer prognosis and prediction [J].
Kourou, Konstantina ;
Exarchos, Themis P. ;
Exarchos, Konstantinos P. ;
Karamouzis, Michalis V. ;
Fotiadis, Dimitrios I. .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2015, 13 :8-17
[10]   Colorectal Cancer Detected by Machine Learning Models Using Conventional Laboratory Test Data [J].
Li, Hui ;
Lin, Jianmei ;
Xiao, Yanhong ;
Zheng, Wenwen ;
Zhao, Lu ;
Yang, Xiangling ;
Zhong, Minsheng ;
Liu, Huanliang .
TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2021, 20