Boosting photocatalysis of hydrazone-linked covalent organic frameworks through introducing electron-rich conjugated aldehyde

被引:40
作者
Tang, Qingqing [1 ,2 ]
Gu, Ying-Ying [1 ]
Ning, Jing [2 ]
Yan, Yingkui [3 ]
Shi, Li [3 ]
Zhou, Mengshi [4 ]
Wei, Hongtao [2 ]
Ren, Xiaohui [5 ]
Li, Xuehui [2 ]
Wang, Junxia [1 ]
Tang, Chao [4 ]
Hao, Long [2 ]
Ye, Jinhua [6 ]
机构
[1] China Univ Petr East China, Coll Chem & Chem Engn, Shandong Key Lab Oil & Gas Storage & Transportat S, Qingdao 266580, Shandong, Peoples R China
[2] Qingdao Agr Univ, Coll Chem & Pharmaceut Sci, 700 Changcheng Rd, Qingdao 266109, Peoples R China
[3] Ningbo Univ, Sch Mat Sci & Chem Engn, Ningbo 315211, Zhejiang, Peoples R China
[4] Xiangtan Univ, Sch Phys & Optoelect, Hunan Key Lab Micronano Energy Mat & Devices, Xiangtan 411105, Hunan, Peoples R China
[5] Wuhan Univ Sci & Technol, Inst Adv Mat & Nanotechnol, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
[6] Natl Inst Mat Sci NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
基金
中国国家自然科学基金;
关键词
Covalent organic framework; Hydrazone-linked COF; Electronic structure modulation; Photocatalytic hydrogen evolution; Photocatalytic CO 2 reduction; VISIBLE-LIGHT; HYDROGEN-PRODUCTION; EVOLUTION; EFFICIENT; DONOR; CRYSTALLINE;
D O I
10.1016/j.cej.2023.144106
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hydrazone-linked COFs have shown promising potential in photocatalysis, but still face problems of limited visible-light absorption and inefficient photocarrier separation/transportation. Herein, electron-rich and conjugated benzotrithiophene (BTT) is introduced into the aldehyde monomer to get two novel BTT-based hydrazonelinked COFs (BTT-Hz-1, -2). Systematical experiments and theoretical calculations show that comparing with the benzene aldehyde-based COFs (TFB-Hz-1, -2), conjugated structure of BTT broadens the visible-light absorption range and improves the transfer efficiency of the photocarriers; electron-rich structure of BTT constructs strong built-in electric field within the COFs, therefore promotes the separation of photocarriers. As a result, BTTHz-1 shows a recorded photocatalytic H2 evolution rate for hydrazone-linked COFs of 17.27 mmol g-1h-1, 22 times than that of TFB-Hz-1, and also reveals noble metal-free CO2 photoreduction property with CO evolution rate of 774.3 & mu;mol g-1h-1. This work presents the importance of electronic structure modulation to the COFbased photocatalysis, and opens a new avenue to improve the photocatalysis performance of hydrazone-linked COFs.
引用
收藏
页数:9
相关论文
共 67 条
[1]   H2 Evolution with Covalent Organic Framework Photocatalysts [J].
Banerjee, Tanmay ;
Gottschling, Kerstin ;
Savasci, Goekcen ;
Ochsenfeld, Christian ;
Lotsch, Bettina V. .
ACS ENERGY LETTERS, 2018, 3 (02) :400-409
[2]   Synthesis of Vinylene-Linked Covalent Organic Frameworks by Monomer Self-Catalyzed Activation of Knoevenagel Condensation [J].
Bi, Shuai ;
Meng, Fancheng ;
Wu, Dongqing ;
Zhang, Fan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (08) :3653-3659
[3]   Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms [J].
Bi, Shuai ;
Yang, Can ;
Zhang, Wenbei ;
Xu, Junsong ;
Liu, Lingmei ;
Wu, Dongqing ;
Wang, Xinchen ;
Han, Yu ;
Liang, Qifeng ;
Zhang, Fan .
NATURE COMMUNICATIONS, 2019, 10 (1)
[4]   Sustained Solar H2 Evolution from a Thiazolo[5,4-d]thiazole-Bridged Covalent Organic Framework and Nickel-Thiolate Cluster in Water [J].
Biswal, Bishnu P. ;
Vignolo-Gonzalez, Hugo A. ;
Banerjee, Tanmay ;
Grunenberg, Lars ;
Savasci, Goekcen ;
Gottschling, Kerstin ;
Nuss, Juergen ;
Ochsenfeld, Christian ;
Lotsc, Bettina V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (28) :11082-11092
[5]   Carbon-based H2-production photocatalytic materials [J].
Cao, Shaowen ;
Yu, Jiaguo .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2016, 27 :72-99
[6]   Ru Nanoparticles-Loaded Covalent Organic Framework for Solvent-Free One-Pot Tandem Reactions in Air [J].
Chen, Gong-Jun ;
Li, Xiao-Bo ;
Zhao, Chen-Chen ;
Ma, Hui-Chao ;
Kan, Jing-Lan ;
Xin, Yu-Bin ;
Chen, Cheng-Xia ;
Dong, Yu-Bin .
INORGANIC CHEMISTRY, 2018, 57 (05) :2678-2685
[7]   Stable Hydrazone-Linked Covalent Organic Frameworks Containing O,N,O'-Chelating Sites for Fe(III) Detection in Water [J].
Chen, Gui ;
Lan, Hai-Hang ;
Cai, Song-Liang ;
Sun, Bing ;
Li, Xin-Le ;
He, Zi-Hao ;
Zheng, Sheng-Run ;
Fan, Jun ;
Liu, Yi ;
Zhang, Wei-Guang .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (13) :12830-12837
[8]   Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution [J].
Chen, Rufan ;
Wang, Yang ;
Ma, Yuan ;
Mal, Arindam ;
Gao, Xiao-Ya ;
Gao, Lei ;
Qiao, Lijie ;
Li, Xu-Bing ;
Wu, Li-Zhu ;
Wang, Cheng .
NATURE COMMUNICATIONS, 2021, 12 (01)
[9]   Modulating Benzothiadiazole-Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting [J].
Chen, Weiben ;
Wang, Lei ;
Mo, Daize ;
He, Feng ;
Wen, Zhilin ;
Wu, Xiaojun ;
Xu, Hangxun ;
Chen, Long .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (39) :16902-16909
[10]   Nanomaterials for renewable energy production and storage [J].
Chen, Xiaobo ;
Li, Can ;
Graetzel, Michael ;
Kostecki, Robert ;
Mao, Samuel S. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (23) :7909-7937