Singular anisotropic elliptic equations with gradient-dependent lower order terms

被引:4
作者
Brandolini, Barbara [1 ]
Cirstea, Florica C. C. [2 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Univ Sydney, Sch Math & Stat, Camperdown, NSW 2006, Australia
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2023年 / 30卷 / 05期
基金
澳大利亚研究理事会;
关键词
Anisotropic operators; Boundary singularity; Leray-Lions operators; Summable data; NATURAL GROWTH; EXISTENCE; SYMMETRIZATION;
D O I
10.1007/s00030-023-00864-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of weak solutions for a general class of Dirichlet anisotropic elliptic problems of the form Au + Phi (x, u, del u) = Psi (u, del u) + Bu + f on a bounded open subset Omega subset of R-N (N >= 2), where f is an element of L-1 (Omega) is arbitrary. Our models are Au = - Sigma(N)(j=1) partial derivative(j) (vertical bar partial derivative(j)u vertical bar(pj-2)partial derivative(j)u) and Phi (u, del u) = (1 + Sigma(N)(j-1) a(j)vertical bar partial derivative(j)u vertical bar(pj)) vertical bar u vertical bar m(-2) u, with m, p(j) > 1, a(j) >= 0 for 1 <= j <= N and Sigma(N)(k=1) (1/p(k)) > 1. The main novelty is the inclusion of possibly singlular gradient-dependent term Psi(u, del u) = Sigma(N)(j=1) vertical bar u vertical bar theta(-2)(j)u vertical bar partial derivative(j)u vertical bar(qj), where theta(j) > 0 and 0 <= q(j) < p(j) for 1 <= j <= N. Under suitable conditions, we prove the existence of solutions by distinguishing two cases: 1) for every 1 <= j <= N, we have theta(j) > 1 and 20 there exists 1 <= j <= N such that theta(j) <= 1. In the latter situation, assuming that f >= 0 a.c. in Omega, we obtain non-negative solutions for our problem.
引用
收藏
页数:58
相关论文
共 50 条
  • [31] QUASILINEAR ELLIPTIC EQUATIONS WITH SINGULAR QUADRATIC GROWTH TERMS
    Boccardo, Lucio
    Leonori, Tommaso
    Orsina, Luigi
    Petitta, Francesco
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (04) : 607 - 642
  • [32] Nonlinear Elliptic Equations with Singular Terms and Combined Nonlinearities
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    ANNALES HENRI POINCARE, 2012, 13 (03): : 481 - 512
  • [33] Large solutions for non-divergence structure equations with singular lower order terms
    Mohammed, Ahmed
    Porru, Giovanni
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 : 470 - 482
  • [34] Finite energy solutions for nonlinear elliptic equations with competing gradient, singular and L1 terms
    Balducci, Francesco
    Oliva, Francescantonio
    Petitta, Francesco
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 391 : 334 - 369
  • [35] Liouville Type Theorems for Elliptic Equations with Gradient Terms
    Alarcon, Salomon
    Garcia-Melian, Jorge
    Quaas, Alexander
    MILAN JOURNAL OF MATHEMATICS, 2013, 81 (01) : 171 - 185
  • [36] Estimates for Solutions to Anisotropic Elliptic Equations with Zero Order Term
    Alberico, Angela
    Di Blasio, Giuseppina
    Feo, Filomena
    GEOMETRIC PROPERTIES FOR PARABOLIC AND ELLIPTIC PDE'S, 2016, 176 : 1 - 15
  • [37] A priori estimates for elliptic equations with gradient dependent term and zero order term
    Alvino, A.
    Betta, M. F.
    Mercaldo, A.
    Volpicelli, R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 302 : 550 - 584
  • [38] Estimates for fully anisotropic elliptic equations with a zero order term
    Alberico, A.
    di Blasio, G.
    Feo, F.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 181 : 249 - 264
  • [39] Nonlinear elliptic equations with a lower-order term depending on the gradient in Orlicz spaces
    Sana Ajagjal
    Driss Meskine
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 1143 - 1161
  • [40] Nonlinear elliptic equations with a lower-order term depending on the gradient in Orlicz spaces
    Ajagjal, Sana
    Meskine, Driss
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 1143 - 1161