Singular anisotropic elliptic equations with gradient-dependent lower order terms

被引:6
作者
Brandolini, Barbara [1 ]
Cirstea, Florica C. C. [2 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Univ Sydney, Sch Math & Stat, Camperdown, NSW 2006, Australia
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2023年 / 30卷 / 05期
基金
澳大利亚研究理事会;
关键词
Anisotropic operators; Boundary singularity; Leray-Lions operators; Summable data; NATURAL GROWTH; EXISTENCE; SYMMETRIZATION;
D O I
10.1007/s00030-023-00864-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of weak solutions for a general class of Dirichlet anisotropic elliptic problems of the form Au + Phi (x, u, del u) = Psi (u, del u) + Bu + f on a bounded open subset Omega subset of R-N (N >= 2), where f is an element of L-1 (Omega) is arbitrary. Our models are Au = - Sigma(N)(j=1) partial derivative(j) (vertical bar partial derivative(j)u vertical bar(pj-2)partial derivative(j)u) and Phi (u, del u) = (1 + Sigma(N)(j-1) a(j)vertical bar partial derivative(j)u vertical bar(pj)) vertical bar u vertical bar m(-2) u, with m, p(j) > 1, a(j) >= 0 for 1 <= j <= N and Sigma(N)(k=1) (1/p(k)) > 1. The main novelty is the inclusion of possibly singlular gradient-dependent term Psi(u, del u) = Sigma(N)(j=1) vertical bar u vertical bar theta(-2)(j)u vertical bar partial derivative(j)u vertical bar(qj), where theta(j) > 0 and 0 <= q(j) < p(j) for 1 <= j <= N. Under suitable conditions, we prove the existence of solutions by distinguishing two cases: 1) for every 1 <= j <= N, we have theta(j) > 1 and 20 there exists 1 <= j <= N such that theta(j) <= 1. In the latter situation, assuming that f >= 0 a.c. in Omega, we obtain non-negative solutions for our problem.
引用
收藏
页数:58
相关论文
共 47 条
[1]   Some remarks on elliptic problems with critical growth in the gradient [J].
Abdellaoui, B ;
Dall'Aglio, A ;
Peral, I .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (01) :21-62
[2]   Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary [J].
Abdellaoui, Boumediene ;
Giachetti, Daniela ;
Peral, Ireneo ;
Walias, Magdalena .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) :1355-1371
[3]   A priori estimates for solutions to anisotropic elliptic problems via symmetrization [J].
Alberico, A. ;
di Blasio, G. ;
Feo, F. .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (07) :986-1003
[4]  
Alberico A., 2017, J MATH SCI-U TOKYO, V224, P607, DOI [10.1007/s10958-017-3439-8, DOI 10.1007/S10958-017-3439-8]
[5]   Fully anisotropic elliptic problems with minimally integrable data [J].
Alberico, Angela ;
Chlebicka, Iwona ;
Cianchi, Andrea ;
Zatorska-Goldstein, Anna .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (06)
[6]   Sharp a priori estimates for a class of nonlinear elliptic equations with lower order terms [J].
Alvino, A. ;
Ferone, V. ;
Mercaldo, A. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (04) :1169-1201
[7]  
Alvino A., 2008, B UNIONE MAT ITAL, V1, P645
[8]  
[Anonymous], 1993, Progress in Partial Differential Equations, The Metz Surveys, 2 (1992), Pitman Research Notes in Mathematics Series
[9]   Some elliptic problems with singular natural growth lower order terms [J].
Arcoya, David ;
Boccardo, Lucio ;
Leonori, Tommaso ;
Porretta, Alessio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (11) :2771-2795
[10]  
BENSOUSSAN A, 1988, ANN I H POINCARE-AN, V5, P347