Singular anisotropic elliptic equations with gradient-dependent lower order terms

被引:4
作者
Brandolini, Barbara [1 ]
Cirstea, Florica C. C. [2 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Univ Sydney, Sch Math & Stat, Camperdown, NSW 2006, Australia
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2023年 / 30卷 / 05期
基金
澳大利亚研究理事会;
关键词
Anisotropic operators; Boundary singularity; Leray-Lions operators; Summable data; NATURAL GROWTH; EXISTENCE; SYMMETRIZATION;
D O I
10.1007/s00030-023-00864-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of weak solutions for a general class of Dirichlet anisotropic elliptic problems of the form Au + Phi (x, u, del u) = Psi (u, del u) + Bu + f on a bounded open subset Omega subset of R-N (N >= 2), where f is an element of L-1 (Omega) is arbitrary. Our models are Au = - Sigma(N)(j=1) partial derivative(j) (vertical bar partial derivative(j)u vertical bar(pj-2)partial derivative(j)u) and Phi (u, del u) = (1 + Sigma(N)(j-1) a(j)vertical bar partial derivative(j)u vertical bar(pj)) vertical bar u vertical bar m(-2) u, with m, p(j) > 1, a(j) >= 0 for 1 <= j <= N and Sigma(N)(k=1) (1/p(k)) > 1. The main novelty is the inclusion of possibly singlular gradient-dependent term Psi(u, del u) = Sigma(N)(j=1) vertical bar u vertical bar theta(-2)(j)u vertical bar partial derivative(j)u vertical bar(qj), where theta(j) > 0 and 0 <= q(j) < p(j) for 1 <= j <= N. Under suitable conditions, we prove the existence of solutions by distinguishing two cases: 1) for every 1 <= j <= N, we have theta(j) > 1 and 20 there exists 1 <= j <= N such that theta(j) <= 1. In the latter situation, assuming that f >= 0 a.c. in Omega, we obtain non-negative solutions for our problem.
引用
收藏
页数:58
相关论文
共 50 条
  • [1] Singular anisotropic elliptic equations with gradient-dependent lower order terms
    Barbara Brandolini
    Florica C. Cîrstea
    Nonlinear Differential Equations and Applications NoDEA, 2023, 30
  • [2] Anisotropic elliptic equations with gradient-dependent lower order terms and L1 data
    Brandolini, Barbara
    Cirstea, Florica C.
    MATHEMATICS IN ENGINEERING, 2023, 5 (04): : 1 - 33
  • [3] Anisotropic degenerate elliptic problem with singular gradient lower order term
    Khelifi, Hichem
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2024, 17 (01): : 149 - 174
  • [4] Gradient estimates for nonlinear elliptic equations with a gradient-dependent nonlinearity
    Ching, Joshua
    Cirstea, Florica C.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (03) : 1361 - 1376
  • [5] Elliptic Equations with Hardy Potential and Gradient-Dependent Nonlinearity
    Gkikas, Konstantinos T.
    Phuoc-Tai Nguyen
    ADVANCED NONLINEAR STUDIES, 2020, 20 (02) : 399 - 435
  • [6] Singular solutions of elliptic equations involving nonlinear gradient terms on perturbations of the ball
    Aghajani, A.
    Cowan, C.
    Lui, S. H.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (04) : 2865 - 2896
  • [7] ON NONLINEAR ELLIPTIC EQUATIONS WITH SINGULAR LOWER ORDER TERM
    Marah, Amine
    Redwane, Hicham
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (02) : 385 - 401
  • [8] Quasilinear elliptic problems with singular and homogeneous lower order terms
    Carmona, Jose
    Leonori, Tommaso
    Lopez-Martinez, Salvador
    Martinez-Aparicio, Pedro J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 179 : 105 - 130
  • [9] ON A CLASS OF NONLINEAR ELLIPTIC EQUATIONS WITH LOWER ORDER TERMS
    Alvino, A.
    Mercaldo, A.
    Volpicelli, R.
    Betta, M. F.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2019, 32 (3-4) : 223 - 232
  • [10] DEGENERATE PARABOLIC EQUATIONS WITH SINGULAR LOWER ORDER TERMS
    de Bonis, Ida
    De Cave, Linda Maria
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (9-10) : 949 - 976