The planted matching problem: sharp threshold and infinite-order phase transition

被引:3
作者
Ding, Jian [1 ]
Wu, Yihong [2 ]
Xu, Jiaming [3 ]
Yang, Dana [4 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[2] Yale Univ, Dept Stat & Data Sci, New Haven, CT USA
[3] Duke Univ, Fuqua Sch Business, Durham, NC USA
[4] Cornell Univ, Dept Stat & Data Sci, Ithaca, NY 14850 USA
基金
美国国家科学基金会;
关键词
Planted matching recovery; Information-theoretic threshold; Phase transition; Linear assignment; Bhattacharyya coefficient; 60C05; 94A15; ZETA(2) LIMIT; PROOF;
D O I
10.1007/s00440-023-01208-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the problem of reconstructing a perfect matching M * hidden in a randomly weighted n xn bipartite graph. The edge set includes every node pair in M * and each of the n(n-1) node pairs not in M * independently with probability d/n. The weight of each edge e is independently drawn from the distributionPif e. M * and fromQif e /. M *. We show that if v dB(P, Q) = 1, where B(P, Q) stands for the Bhattacharyya coefficient, the reconstruction error (average fraction of misclassified edges) of the maximum likelihood estimator of M * v converges to 0 as n. 8. Conversely, if dB(P, Q) = 1 + for an arbitrarily small constant > 0, the reconstruction error for any estimator is shown to be bounded away from 0 for both the sparse (fixed d) and dense (growing d) regimes, resolving the conjecture in Moharrami et al. (Ann Appl Probab 31(6):2663-2720, 2021. https://doi.org/10.1214/20- AAP1660) and Semerjian et al. (Phys Rev E 102:022304, 2020. https://doi.org/ 10.1103/PhysRevE.102.022304). Furthermore, in the special case of complete exponentially weighted graph with d = n, P = exp(.), and Q = exp(1/n), for which the sharp threshold simplifies to. = 4,
引用
收藏
页码:1 / 71
页数:71
相关论文
共 30 条
  • [1] The ζ(2) limit in the random assignment problem
    Aldous, DJ
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2001, 18 (04) : 381 - 418
  • [2] Alon Noga., 2008, WILEY INTERSCIENCE S, Vthird
  • [3] Hidden Hamiltonian Cycle Recovery via Linear Programming
    Bagaria, Vivek
    Ding, Jian
    Tse, David
    Wu, Yihong
    Xu, Jiaming
    [J]. OPERATIONS RESEARCH, 2020, 68 (01) : 53 - 70
  • [4] Bhattacharyya A., 1943, Bulletin of the Calcutta Mathematical Society, V35, P99, DOI DOI 10.1038/157869B0
  • [5] Inference in particle tracking experiments by passing messages between images
    Chertkov, M.
    Kroc, L.
    Krzakala, F.
    Vergassola, M.
    Zdeborova, L.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (17) : 7663 - 7668
  • [6] Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications
    Decelle, Aurelien
    Krzakala, Florent
    Moore, Cristopher
    Zdeborova, Lenka
    [J]. PHYSICAL REVIEW E, 2011, 84 (06)
  • [7] Ding J., 2020, P C LEARN THEOR COLT
  • [8] Ding J., 2015, T AM MATH SOC
  • [9] Percolation of averages in the stochastic mean field model: the near-supercritical regime
    Ding, Jian
    Goswami, Subhajit
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20
  • [10] SCALING WINDOW FOR MEAN-FIELD PERCOLATION OF AVERAGES
    Ding, Jian
    [J]. ANNALS OF PROBABILITY, 2013, 41 (06) : 4407 - 4427