High-throughput RNA isoform sequencing using programmed cDNA concatenation

被引:76
作者
Al'Khafaji, Aziz M. [1 ]
Smith, Jonathan T. [1 ]
Garimella, Kiran V. [1 ]
Babadi, Mehrtash [1 ]
Popic, Victoria [1 ]
Sade-Feldman, Moshe [1 ,2 ]
Gatzen, Michael [1 ]
Sarkizova, Siranush [1 ]
Schwartz, Marc A. [1 ,3 ,4 ,5 ]
Blaum, Emily M. [1 ,2 ]
Day, Allyson [1 ]
Costello, Maura [1 ]
Bowers, Tera [1 ]
Gabriel, Stacey [1 ]
Banks, Eric [1 ]
Philippakis, Anthony A. [1 ]
Boland, Genevieve M. [6 ]
Blainey, Paul C. [1 ,7 ,8 ]
Hacohen, Nir [1 ,2 ,9 ,10 ]
机构
[1] Broad Inst MIT & Harvard, Cambridge 02142, MA USA
[2] Massachusetts Gen Hosp, Ctr Canc Res, Dept Med, Boston, MA 02114 USA
[3] Harvard Med Sch, Dept Pediat, Boston, MA USA
[4] Boston Childrens Hosp, Div Hematol Oncol, Boston, MA USA
[5] Dana Farber Canc Inst, Dept Pediat Oncol, Boston, MA USA
[6] Harvard Med Sch, Massachusetts Gen Hosp, Div Surg Oncol, Boston, MA USA
[7] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[8] MIT, Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[9] Harvard Med Sch, Boston, MA 02115 USA
[10] Massachusetts Gen Hosp, Ctr Immunol & Inflammatory Dis, Charlestown, MA 02129 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/s41587-023-01815-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Full-length RNA-sequencing methods using long-read technologies can capture complete transcript isoforms, but their throughput is limited. We introduce multiplexed arrays isoform sequencing (MAS-ISO-seq), a technique for programmably concatenating complementary DNAs (cDNAs) into molecules optimal for long-read sequencing, increasing the throughput >15-fold to nearly 40 million cDNA reads per run on the Sequel IIe sequencer. When applied to single-cell RNA sequencing of tumor-infiltrating T cells, MAS-ISO-seq demonstrated a 12- to 32-fold increase in the discovery of differentially spliced genes. Programmable concatenation of cDNA molecules increases the throughput of PacBio sequencing about 15-fold.
引用
收藏
页码:582 / 586
页数:16
相关论文
共 36 条
[21]   The Sequence Alignment/Map format and SAMtools [J].
Li, Heng ;
Handsaker, Bob ;
Wysoker, Alec ;
Fennell, Tim ;
Ruan, Jue ;
Homer, Nils ;
Marth, Gabor ;
Abecasis, Goncalo ;
Durbin, Richard .
BIOINFORMATICS, 2009, 25 (16) :2078-2079
[22]   Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets [J].
Macosko, Evan Z. ;
Basu, Anindita ;
Satija, Rahul ;
Nemesh, James ;
Shekhar, Karthik ;
Goldman, Melissa ;
Tirosh, Itay ;
Bialas, Allison R. ;
Kamitaki, Nolan ;
Martersteck, Emily M. ;
Trombetta, John J. ;
Weitz, David A. ;
Sanes, Joshua R. ;
Shalek, Alex K. ;
Regev, Aviv ;
McCarroll, Steven A. .
CELL, 2015, 161 (05) :1202-1214
[23]  
Niu Q, 2013, PLOS ONE, V8, DOI [10.1371/journal.pone.0067203, 10.1371/journal.pone.0082713]
[24]   Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL [J].
Oberdoerffer, Shalini ;
Moita, Luis Ferreira ;
Neems, Daniel ;
Freitas, Rui P. ;
Hacohen, Nir ;
Rao, Anjana .
SCIENCE, 2008, 321 (5889) :686-691
[25]  
Paul L., 2016, bioRxiv, DOI DOI 10.1101/080747
[26]  
Pertea G., 2020, F1000Research, DOI DOI 10.12688/F1000RESEARCH.23297.2
[27]   ConcatSeq: A method for increasing throughput of single molecule sequencing by concatenating short DNA fragments [J].
Schlecht, Ulrich ;
Mok, Janine ;
Dallett, Carolina ;
Berka, Jan .
SCIENTIFIC REPORTS, 2017, 7
[28]  
Schreiber J, 2018, J MACH LEARN RES, V18
[29]   RNA mis-splicing in disease [J].
Scotti, Marina M. ;
Swanson, Maurice S. .
NATURE REVIEWS GENETICS, 2016, 17 (01) :19-32
[30]  
Seki M, 2021, METHODS MOL BIOL, V2284, P531, DOI 10.1007/978-1-0716-1307-8_29