A survey on Lyapunov functions for epidemic compartmental models

被引:8
作者
Cangiotti, Nicolo [1 ]
Capolli, Marco [2 ]
Sensi, Mattia [3 ,4 ]
Sottile, Sara [5 ]
机构
[1] Politecn Milan, Dept Math, Via Bonardi 9, I-20133 Milan, Italy
[2] Polish Acad Sci, Inst Math, Jana & Jedrzeja Sniadeckich 8, PL-00656 Warsaw, Poland
[3] Univ Cote Azur, MathNeuro Team, Inria, 2004 Rte Lucioles, F-06410 Biot, France
[4] Politecn Torino, Dept Math Sci G L Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[5] Univ Trento, Dept Math, Via Sommar 14, Povo, I-38123 Trento, Italy
来源
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA | 2024年 / 17卷 / 02期
关键词
Epidemic models; Lyapunov functions; Compartmental models; Global stability; Ordinary differential equations; Disease free and endemic equilibria; GLOBAL STABILITY; NONLINEAR INCIDENCE; DYNAMICAL BEHAVIOR; DISEASE-MODELS; SIR; INFECTION; TRANSMISSION; SEIR;
D O I
10.1007/s40574-023-00368-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this survey, we propose an overview on Lyapunov functions for a variety of compartmental models in epidemiology. We exhibit the most widely employed functions, and provide a commentary on their use. Our aim is to provide a comprehensive starting point to readers who are attempting to prove global stability of systems of ODEs. The focus is on mathematical epidemiology, however some of the functions and strategies presented in this paper can be adapted to a wider variety of models, such as prey-predator or rumor spreading.
引用
收藏
页码:241 / 257
页数:17
相关论文
共 88 条
  • [1] Chain Recurrence, Chain Transitivity, Lyapunov Functions and Rigidity of Lagrangian Submanifolds of Optical Hypersurfaces
    Abbondandolo, Alberto
    Bernardi, Olga
    Cardin, Franco
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (01) : 287 - 308
  • [2] Anderson RM., 2013, POPULATION DYNAMICS
  • [3] Modelling a pandemic with asymptomatic patients, impact of lockdown and herd immunity, with applications to SARS-CoV-2
    Ansumali, Santosh
    Kaushal, Shaurya
    Kumar, Aloke
    Prakash, Meher K.
    Vidyasagar, M.
    [J]. ANNUAL REVIEWS IN CONTROL, 2020, 50 : 432 - 447
  • [4] Stability and Lyapunov functions for systems with Atangana-Baleanu Caputo derivative: An HIV/AIDS epidemic model
    Antonio Taneco-Hernandez, Marco
    Vargas-De-Leon, Cruz
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 132
  • [5] Global asymptotic stability of an SIR epidemic model with distributed time delay
    Beretta, E
    Hara, T
    Ma, WB
    Takeuchi, Y
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (06) : 4107 - 4115
  • [6] BERETTA E, 1995, J MATH BIOL, V33, P250, DOI 10.1007/BF00169563
  • [7] Lyapounov Functions of Closed Cone Fields: From Conley Theory to Time Functions
    Bernard, Patrick
    Suhr, Stefan
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 359 (02) : 467 - 498
  • [8] Global analysis of multi-strains SIS, SIR and MSIR epidemic models
    Bichara D.
    Iggidr A.
    Sallet G.
    [J]. Journal of Applied Mathematics and Computing, 2014, 44 (1-2) : 273 - 292
  • [9] Bichara D., 2012, GLOBAL STABILITY SIR
  • [10] Boukhouima A., 2022, MATH ANAL INFECT DIS, P125, DOI [10.1016/B978-0-32-390504-6.00013-9, DOI 10.1016/B978-0-32-390504-6.00013-9]