Geometric Modeling for Control of Thermodynamic Systems

被引:4
|
作者
van der Schaft, Arjan [1 ]
机构
[1] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intellig, Jan C Willems Ctr Syst & Control, NL-9747 AG Groningen, Netherlands
关键词
macroscopic thermodynamics; dissipativity theory; Liouville geometry; homogeneous Hamiltonian dynamics; interconnection; control; DISSIPATIVE DYNAMICAL-SYSTEMS; PORT-HAMILTONIAN SYSTEMS; PASSIVITY-BASED CONTROL; INPUT-OUTPUT; IRREVERSIBLE-PROCESSES; FORMULATION; STABILIZATION; EQUIVALENCE;
D O I
10.3390/e25040577
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper discusses the way that energy and entropy can be regarded as storage functions with respect to supply rates corresponding to the power and thermal ports of the thermodynamic system. Then, this research demonstrates how the factorization of the irreversible entropy production leads to quasi-Hamiltonian formulations, and how this can be used for stability analysis. The Liouville geometry approach to contact geometry is summarized, and how this leads to the definition of port-thermodynamic systems is discussed. This notion is utilized for control by interconnection of thermodynamic systems.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] The definition of entropy production metric with application in passivity-based control of thermodynamic systems
    Dong, Zhe
    Li, Junyi
    Zhang, Zuoyi
    Dong, Yujie
    Huang, Xiaojin
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 209
  • [2] Control design for thermodynamic systems on contact manifolds
    Hudon, Nicolas
    Guay, Martin
    Dochain, Denis
    IFAC PAPERSONLINE, 2017, 50 (01): : 588 - 593
  • [3] Optimal control of thermodynamic port-Hamiltonian Systems
    Maschke, Bernhard
    Philipp, Friedrich
    Schaller, Manuel
    Worthmann, Karl
    Faulwasser, Timm
    IFAC PAPERSONLINE, 2022, 55 (30): : 55 - 60
  • [4] A Port Hamiltonian approach to dynamical chemical process systems network modeling and analysis
    Tefera, Dereje Tamiru
    Dubljevic, Stevan
    Prasad, Vinay
    CHEMICAL ENGINEERING SCIENCE, 2022, 261
  • [5] Modeling and boundary control of infinite dimensional systems in the Brayton-Moser framework
    Kosaraju, Krishna Chaitanya
    Pasumarthy, Ramkrishna
    Jeltsema, Dimitri
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2019, 36 (02) : 485 - 513
  • [6] Newton-Euler modeling and Hamiltonians for robot control in the geometric algebra
    Bayro-Corrochano, Eduardo
    Medrano-Hermosillo, Jesus
    Osuna-Gonzalez, Guillermo
    Uriostegui-Legorreta, Ulises
    ROBOTICA, 2022, 40 (11) : 4031 - 4055
  • [7] Thermodynamic modeling of a class of distributed systems with diffusion
    Zarate-Navarro, Marco A.
    Schiavone-Valdez, Sergio D.
    Xie, Junyao
    Dubljevic, Stevan
    IFAC PAPERSONLINE, 2022, 55 (18): : 105 - 110
  • [8] Nonlinear state feedback control design for port-Hamiltonian systems with unstructured component
    Alavi, Seyedabbas
    Hudon, Nicolas
    IFAC PAPERSONLINE, 2021, 54 (03): : 554 - 559
  • [9] Geometric Control Theory and Linear Switched Systems
    Szabo, Zoltan
    EUROPEAN JOURNAL OF CONTROL, 2009, 15 (3-4) : 249 - 259
  • [10] Modeling and Control of Physiological Systems
    Kovacs, L.
    FIRST EUROPEAN BIOMEDICAL ENGINEERING CONFERENCE FOR YOUNG INVESTIGATORS, 2015, 50 : 7 - 10